Lecture 17 - Topics

- Light-cone fields and particles (cont'd.)

Reading: Sections 10.2-10.4
What are we doing now: Preparing grounds to see what arises from the string. How are particles described: Begin with simplest particle/field: the scalar field.

Lagrangian density for a scalar field $\phi(x)$:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{0} \phi\right)^{2}-\left[\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} M^{2} \phi^{2}\right]
$$

The first term represents the KE density and the second term represents the PE density.

Note since KE density has same units as PE density:

$$
\begin{gathered}
{\left[\frac{1}{2}\left(\partial_{0} \phi\right)^{2}\right]=\left[\frac{1}{2} M^{2} \phi^{2}\right] \Rightarrow[M]} \\
\mathcal{L}=-\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} M^{2} \phi^{2} \\
S=\int d \vec{x} d t \mathcal{L} \\
E=\int H d \vec{x}=\int d \vec{x}\left(\frac{1}{2}\left(\partial_{0} \phi\right)^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} M^{2} \phi^{2}\right) \\
\delta S=\int d \vec{x} d t\left(-\eta^{\mu \nu} \partial_{\mu}(\delta \phi)_{\nu} \phi-M^{2} \phi \delta \phi\right) \\
=\int d \vec{x} d t \delta \phi\left(\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi-M^{2} \phi\right) \\
-\frac{\partial^{2} \phi}{\partial t^{2}}+\nabla^{2} \phi-M^{2} \phi=0
\end{gathered}
$$

This is the equation of motion of scalard field.
Next: Develop notion of scalar particles. How do we recognize them?

Plane Waves

Set scalar field to something that could satisfy equation of motion. Try:

$$
\phi=a \exp (-i E t+i \vec{p} \cdot \vec{x})
$$

Then:

$$
\begin{gathered}
-(-i E)^{2}+(i \vec{p}) \cdot(i \vec{p})-M^{2}=0 \\
E^{2}-\vec{p}^{2}=M^{2} \Rightarrow-p^{2}=M^{2} \quad\left(\text { where } p=p_{\mu} p^{\mu}\right)
\end{gathered}
$$

This looks sort of like a particle in quantum mechanics, but a bit naive. Try:

$$
\phi=a \exp (-i E t+i \vec{p} \cdot \vec{x})+a^{*} \exp (i E t-i \vec{p} \cdot \vec{x})
$$

Can't anymore think of a particle with momentum p and energy E since get negative E. So abandon that interpretation.

Quantum Field Theory: The fields are dynamical variables and operations.

$$
\begin{gathered}
(\phi(x))^{*}=\int \frac{d^{p} p}{(2 \pi)^{D}} \exp (-i p \cdot x)(\phi(p))^{*}=\int \frac{d^{P} \vec{p}}{(2 \pi)^{D}} \exp (i p \cdot x)(\phi(-p))^{*} \\
(\phi(x))^{*}=\int \frac{d^{p} \vec{p}}{(2 \pi)^{D}} \exp (i p \cdot x)(\phi(p))
\end{gathered}
$$

$$
[\phi(p)]^{*}=\phi(-p)
$$

If know value of field for some $\left(E_{p}, \vec{p}\right)$
So geometrically, the reality condition of a point $\left(E_{p}, \vec{p}\right)$ in momentum space in the top hyperboloid is equal to the realty condition of the complex conjugate in the bottom hyperboloid.

$$
\begin{gathered}
\left(\partial^{2}-M^{2}\right) \int \frac{d^{D} p}{(2 \pi)^{D}} \exp (i p \cdot x) \phi(p)=0 \\
\int \frac{d^{D} p}{(2 \pi)^{D}}\left(-p^{2}-M^{2}\right) \phi(p) \exp (i p x)=0 \\
\left(p^{2}+M^{2}\right) \phi(p)=0 \forall p
\end{gathered}
$$

Say $p^{2}+M^{2} \neq 0$ then $\phi(p)=0$
Say $p^{2}+M^{2}=0$ then $\phi(p)$ is arbitary.
This is the complete solution. A little simple sounding, but beautiful geometric interpretation. If not on hyperboloid, field vanishes. If on hyperboloid, field arbitrary (subject to reality condition).

$$
\phi(p) \text { determines } \phi(-p)=(\phi(p))^{*}
$$

1 degree of freedom in the scalar field. (2 real numbers for two points).

Field Configuration

$$
\begin{gathered}
\phi_{p}(t, \vec{x})=\frac{1}{\sqrt{v}} \frac{1}{\sqrt{2 E_{p}}}\left(a(t) e^{i \vec{p} \cdot \vec{x}}+a^{*}(t) e^{-i \vec{p} \cdot \vec{x}}\right) \\
V=L_{1} L_{2} L_{3} \ldots L_{d} \\
x^{i} \approx x^{i}+L^{i} \\
p_{i}\left(x_{i}+L_{i}\right)=p_{i} x_{i}+2 \pi n_{i} \\
p_{i} L_{i}=2 \pi n_{i} \\
S=\int d \vec{x} d t\left(-\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} M^{2} \phi^{2}\right)
\end{gathered}
$$

Can evaluate. Can do x integral, but cannot do t integral since t still arbitrary.

$$
\begin{array}{r}
E=\int d \vec{x} H \\
S=\int d t\left(\frac{1}{2 E_{p}} \dot{a}^{*}(t) a(t)-\frac{1}{2} E_{p} a^{*}(t) a(t)\right) \\
E=\frac{1}{2 E_{p}} \dot{a}^{*}(t) \dot{a}(t)+\frac{1}{2} E_{p} a^{*}(t) a(t)
\end{array}
$$

$$
a(t)=q_{1}(t)+i q_{2}(t)
$$

Thus:

$$
S=\sum_{i=1}^{2} \int d t\left(\frac{1}{2 E_{p}} \dot{q}_{i}^{2}-\frac{1}{2} E_{p} q_{i}^{2}\right)
$$

This is a harmonic oscillator.

$$
\begin{gathered}
p_{i}=\frac{\partial S}{\partial q_{i}}=\frac{\dot{q}_{i}}{E_{p}} \\
p_{1}+i p_{2}=\frac{1}{E_{p}}\left(\dot{q}_{1}+i \dot{q}_{2}\right)=\frac{\dot{a}(t)}{E_{p}}
\end{gathered}
$$

Equation of motion:

$$
\begin{gathered}
\ddot{q}_{i}=-E_{p}^{2} q_{i} \\
\ddot{a}(t)=-E_{p}^{2} a(t) \\
a(t)=a_{p} e^{-i E_{p} t}+a_{-p}^{*} e^{i E_{p} t}
\end{gathered}
$$

No reality condition is needed.

$$
E=H=E_{p}\left(a_{p}^{*} a_{p}+a_{-p}^{*} a_{-p}\right)
$$

Let $a_{\vec{p}}, a_{-\vec{p}}$ be destruction operations. Let $a_{\vec{p}}^{*} \rightarrow a_{\vec{p}}^{+}, a_{-\vec{p}}^{*} \rightarrow a_{-\vec{p}}^{+}$be creation operations.

$$
\left[a_{p}, a_{p}^{+}\right]=1=\left[a_{-p}, a_{-p}^{+}\right]
$$

All other commutators $=0$.

How do we check this is okay?

$$
\begin{gathered}
{\left[q_{i}(t), p_{j}(t)\right]=i \delta_{i j}} \\
E=H=E_{p}\left(a_{p}^{+} a_{p}+a_{-p}^{+} a_{-p}\right) \\
\phi_{p}(t, \vec{x})=\frac{1}{\sqrt{v}} \frac{1}{\sqrt{2 E_{p}}}\left(a(t) e^{i \vec{p} \cdot \vec{x}}+a^{*}(t) e^{-i \vec{p} \cdot \vec{x}}\right) \\
=\frac{1}{\sqrt{v}} \frac{1}{\sqrt{2 E_{p}}}\left(a_{p} e^{-i E_{p} t+i p x}+a_{-p} e^{i E_{p} t+i p x}+a_{p+} e^{i E_{p} t-i \vec{p} \cdot \vec{x}}+a_{-p} e^{i E_{p} t-i \vec{p} \vec{x}}\right) \\
\phi_{p}(t, \vec{x})=\frac{1}{\sqrt{v}} \sum_{\vec{p}} \frac{1}{\sqrt{2 E_{p}} a_{p} e^{-i E_{p} t+i(\vec{p} \cdot \vec{x})}+a_{p}^{+} e^{i E_{p} t-i(\vec{p} \cdot \vec{x})}} \\
\sqrt{E=H=\sum_{\vec{p}} E_{p} a_{\vec{p}}^{+} a_{\vec{p}}} \\
{\left[a_{\vec{p}}, a^{+} \vec{q}\right]=\delta_{\vec{p}, \vec{q}}}
\end{gathered}
$$

Define a vacuum state $|\Omega\rangle$:

$$
\begin{gathered}
a_{\vec{p}}|\Omega\rangle=0 \forall \vec{p} \\
E|\Omega\rangle=0
\end{gathered}
$$

Create a state $a_{\vec{p}}^{+}|\Omega\rangle$
Momentum Operator: $\vec{P}=\sum_{\vec{p}} \vec{p} a_{p}^{+} a_{p}$. Note $\vec{P}|\Omega\rangle=0$

$$
\sum_{\vec{q}}=E_{q} a_{q}^{+} a_{q} a_{\vec{p}}|\Omega\rangle=\sum_{q} E_{q} a_{q}^{+}\left[a_{q}, a_{-}^{+}\right]|\Omega\rangle=E_{\vec{p}}\left(a_{p}^{+}|\Omega\rangle\right)
$$

So call $a_{\vec{p}}|\Omega\rangle$ a scalar particle of mass M, momentum \vec{p}, and energy $E_{\vec{p}}=$ $\sqrt{\vec{p}^{2}+M^{2}}$

Call a 1-particle state $a_{\overrightarrow{p_{1}}}^{+}, a_{\overrightarrow{p_{2}}}^{+}, \ldots, a_{\overrightarrow{p_{n}}}^{+}|\Omega\rangle=n$ - particle state of total energy $E_{\overrightarrow{p_{1}}}+E_{\overrightarrow{p_{2}}}+\ldots+E_{\overrightarrow{p_{n}}}$ and momentum $\overrightarrow{p_{1}}+\overrightarrow{p_{2}}+\ldots+\overrightarrow{p_{n}}$

$$
\left(E, p^{1}, p^{2}, \ldots, p^{d}\right) \leftrightarrow\left(p^{+}, p^{-}, p^{I}\right)
$$

We have labelled the oscillators by the spatial components of the momentum which determine the energy.

Light-cone oscillators:

$$
p^{-}=\frac{1}{2 p^{+}}\left(p^{I^{2}}+M^{2}\right)
$$

