Lecture 15 - Topics

- Solution of the open string motion in the light-cone gauge

Reading: Sections 9.2-9.4

$$
x^{0}\left(\tau_{0}, \sigma\right)=c \tau_{0}
$$

$\tau=\tau_{0}$ is a line, goes to intersection of the worldsheet with the $x=c \tau_{0}$ hyperplane.

$$
\begin{gathered}
n_{\mu} x^{\mu}=\lambda \tau_{0} \\
n_{\mu} x_{1}^{\mu}=\lambda \tau_{0} \\
n_{\mu} x_{2}^{\mu}=\lambda \tau_{0} \\
n_{\mu}\left(x_{1}^{\mu}-x_{2}^{\mu}\right)=0
\end{gathered}
$$

$n_{\mu}=(1, \overrightarrow{0}), \lambda=c$, recover static gauge
If n^{μ} to be timelike:

$$
n^{\mu} \Delta x_{\mu}=0
$$

Same for $\eta^{\mu}=(a, \overrightarrow{0}) . \Delta x_{\mu}=(0, \vec{v})$.

Set λ usefully (aim at τ, σ dimensionless)

$$
\begin{gathered}
n \cdot x(\tau, \sigma)=\widetilde{\lambda}(\underbrace{n \cdot p}_{\text {const }}) \tau \\
P^{\mu}=\int_{0}^{\sigma_{1}} \mathcal{P}^{\tau \mu} d \sigma \\
\left.\frac{d P^{\mu}}{d \tau}=-\mathcal{P}^{\sigma \mu}\right]_{0}^{\sigma_{1}}
\end{gathered}
$$

Ask for $n \cdot \mathcal{P}^{\sigma}=0$ at endpoints so that $\frac{d}{d \tau}(n \cdot p)=0$.
Reminder of Units:
J : Angular momentum of rotating string

$$
\frac{J}{\hbar}=\alpha^{\prime} E^{2}
$$

$\left[\alpha^{\prime}\right]=\frac{1}{[E]^{2}}$ since $\frac{J}{\hbar}$ is dimensionless.
Let's use natural units (as opposed to Planck units), set $c=1, \hbar=1$. Thus:

$$
\begin{gathered}
\frac{L}{T}=1 \\
M L^{2}=1 \Rightarrow M L=1
\end{gathered}
$$

Thus everything can be written in terms of units of length (sometimes people use mass instead)

So in natural units, $\left[\alpha^{\prime}\right]=\frac{1}{[E]^{2}}=\frac{1}{M^{2}}=L^{2}$. So string length $l_{s}=\sqrt{\alpha^{\prime}}$ in natural units (to get actual numbers, must replace the c 's and \hbar 's)

$$
l_{s}=\hbar c \sqrt{\alpha^{\prime}}
$$

In natural units:

$$
\frac{T_{0}}{c}=\frac{1}{2} \pi \alpha^{\prime}
$$

To remember:

$$
\begin{array}{|}
l_{s}=\sqrt{\alpha^{\prime}} \\
\frac{T_{0}}{c}=\frac{1}{2} \pi \alpha^{\prime} \\
\hline
\end{array}
$$

Back to I. $L=\prod \frac{1}{L} \Rightarrow[\widetilde{\lambda}]=L^{2} \Rightarrow \widetilde{\lambda} \propto \alpha^{\prime}$.
As it turns out, $n \cdot x=2 \alpha^{\prime}(n \cdot p) \tau$ (the 2 will be convenient)

σ parameterization

Static gauge:

$$
\begin{aligned}
\mathcal{P}^{\tau o}= & \frac{T_{0}}{c} \frac{\left(x^{\prime}\right)^{2} \dot{x}^{o}}{\sqrt{\cdots}} \\
= & \frac{T_{0}}{c} \frac{(\partial \vec{x} / \partial \sigma)^{2}}{d s / d \sigma \sqrt{1-v_{\perp}^{2} / c^{2}}} \\
& \left(\frac{\partial \vec{x}}{\partial \sigma}\right)^{2}=\left(\frac{d s}{d \sigma}\right)^{2} \\
& \mathcal{P}^{\tau 0}=\frac{T_{0}}{c} \frac{d s / d \sigma}{\sqrt{1-v_{\perp}^{2} / c^{2}}}
\end{aligned}
$$

1. Try to make $n \cdot \mathcal{P}^{\tau}$ constant along the parameterized string.
2. Get a range $\sigma \in[0, \pi]$

Imagine had some parameter $\widetilde{\sigma}, \widetilde{\mathcal{P}}^{\tau \mu}(\tau, \sigma)$. If change parameter, how does it transform?

Claim transformation law:

$$
\mathcal{P}^{\tau \mu}(\tau, \sigma)=\frac{d \widetilde{\sigma}}{d \sigma} \widetilde{\mathcal{P}}^{\tau \mu}(\tau, \widetilde{\sigma})
$$

Makes sense that $\mathcal{P}^{\tau \mu} d \sigma$ is reparam. invar.
Multiply by n :

$$
n \cdot \mathcal{P}^{\tau}(\tau, \sigma)=\frac{d \widetilde{\sigma}}{d \sigma} n \cdot \widetilde{\mathcal{P}}(\tau, \widetilde{\sigma})
$$

Can set to be A is constant with respect to σ, might be a function of τ

$$
\int_{0}^{\sigma_{1}} n \cdot \mathcal{P}^{\tau}(\tau, \sigma)=\sigma_{1} A(\tau)
$$

Also $\int=n \cdot P$ (momentum). So, $A(\tau)=n \cdot p / \sigma$. A not τ dependent!

$$
\begin{aligned}
& n \cdot \mathcal{P}^{\tau}(\tau, \sigma)=\frac{n \cdot p}{\sigma_{1}} \\
& n \cdot \mathcal{P}^{\tau}(\tau, \sigma)=\frac{n \cdot p}{\pi}
\end{aligned}
$$

$\sigma \in[0, \pi]$

Recall eq. of motion of string:

$$
\frac{\partial \mathcal{P}^{\sigma \mu}}{\partial \tau}+\frac{\partial \mathcal{P}^{\sigma \mu}}{\partial \sigma}=0
$$

Dot with n_{μ}

$$
\begin{gathered}
\frac{\partial}{\partial \tau}\left(n \cdot \mathcal{P}^{\tau}\right)+\frac{\partial}{\partial \sigma}\left(n \cdot \mathcal{P}^{\sigma}\right)=0 \\
\frac{\partial}{\partial \sigma}\left(n \cdot \mathcal{P}^{\sigma}\right)=0
\end{gathered}
$$

We had $n \cdot \mathcal{P}^{\sigma}=0$ at string boundaries $\left(\sigma=0, \sigma=\sigma_{1}=\pi\right)$ and since $\frac{\partial}{\partial \sigma}\left(n \cdot \mathcal{P}^{\sigma}\right)=0, n \cdot \mathcal{P}^{\sigma}=0 \forall \sigma$ and \forall times.

Closed Strings

$n \cdot x=2 \alpha^{\prime}(n \cdot p) \tau$
For closed strings, more convenient to remove 2 :

$$
\begin{gathered}
n \cdot x=\alpha^{\prime}(n \cdot p) \tau \\
n \cdot \mathcal{P}^{\tau}(\tau, \sigma)=\frac{n \cdot p}{2 \pi}
\end{gathered}
$$

$n \cdot \mathcal{P}^{\sigma}=0 ? ? ?$ Do have $\frac{\partial}{\partial \sigma}\left(n \cdot \mathcal{P}^{\sigma}\right)=0$, but don't have endpoints having $n \cdot \mathcal{P}^{\sigma}=0$.
Open strings give rise to E\&M. Closed strings give rise to gravity (harder! more subtle).

For a closed string, know how to put σ param. on strings at different times, but we don't know how to correlate these " σ ticks". No special points on closed string like endpoints on open string.

Compute:

$$
n \cdot \mathcal{P}^{\sigma}=\frac{1}{2 \pi \alpha^{\prime}} \frac{\left(\dot{x} \cdot x^{\prime}\right)-\dot{x}^{2} \partial_{\sigma}(\widetilde{n \cdot x})}{\sqrt{\cdots}}
$$

$n \cdot x \propto \tau$, so $\partial_{\sigma}(n \cdot x)=0$, so to get $n \cdot \mathcal{P}^{\sigma}=0$, make $\dot{x} \cdot x^{\prime}=0$. So in spacetime sense want $\dot{x} \perp x^{\prime}$.
x^{\prime} : tangent to string
\dot{x} : line of constant σ

If given space vector x^{\prime} and \exists timelike vector, then \exists unique vector orthogonal to x^{\prime} prop to \dot{x}. So we lock the params. on the string, but still remains the ambiguity of translation of string (where do we set $\sigma=0$ No one knows.)

Summary

1.

$$
n \cdot x=\beta \alpha^{\prime}(n \cdot p) \tau
$$

where $\beta=2$ if open string, or 1 if closed string.
2.

$$
n \cdot \mathcal{P}^{\tau}=\frac{n p \beta}{2 \pi}
$$

3.

$$
\sigma \in\left[0, \frac{2 \pi}{\beta}\right]
$$

4.

$$
\begin{gathered}
n \cdot \mathcal{P}^{\sigma}=0 \text { everywhere } \Rightarrow \dot{x} \cdot x^{\prime}=0 \\
\mathcal{P}_{\mu}^{\tau}=\frac{1}{2 \pi \alpha^{\prime}} \frac{x^{\prime 2} \dot{x}_{\mu}}{\sqrt{-\dot{x}^{2} x^{\prime 2}}}
\end{gathered}
$$

Dot by n

$$
\begin{gathered}
n \cdot \mathcal{P}^{\tau}=\frac{1}{2 \pi \alpha} \frac{x^{\prime 2}}{\sqrt{-\dot{x}^{2} x^{\prime 2}}} \beta \alpha^{\prime}(n \cdot p)=\frac{(n \cdot p) \beta}{2 \pi} \\
1=\frac{x^{\prime 2}}{-\dot{x}^{2} x^{\prime 2}} \\
\left(x^{\prime 2}\right)^{2}=-\left(\dot{x}^{2}\right)\left(x^{\prime 2}\right), \quad\left(x^{\prime}\right)^{2} \neq 0 \\
x^{\prime 2}=\dot{x}^{2} \\
\dot{x}^{2}+x^{\prime 2}=0
\end{gathered}
$$

Using (4), get:

$$
\left(\dot{x} \pm x^{\prime}\right)^{2}=0
$$

In static gauge, got:

$$
\begin{aligned}
& \left(\frac{\partial \vec{x}}{\partial \sigma} \pm \frac{1}{c} \frac{\partial \vec{x}}{\partial t}\right)=1 \\
& \mathcal{P}^{\tau \mu}=\frac{1}{2 \pi \alpha^{\prime}} \frac{\partial x^{\mu}}{\partial \tau}
\end{aligned}
$$

$$
\mathcal{P}^{\sigma \mu}=-\frac{1}{2 \pi \alpha^{\prime}} \frac{\partial x^{\mu}}{\partial \sigma}
$$

Eq. of Motion:

$$
\ddot{x}^{\mu}-x^{\mu \prime \prime}=0
$$

Wave equation for everyone!

