Lecture 14 - Topics

- Momentum charges for the string
- Lorentz charges for the strings
- Angular momentum of the rotating string
- Discuss α^{\prime} and the string length ℓ_{s}
- General gauges: Fixing τ and natural units

Reading: Section 8.4-8.6 and 9.1

$$
S=\int d \xi^{0} d \xi^{1} \ldots d \xi^{p} \mathcal{L}\left(\phi^{a}, \partial_{\alpha} \phi^{a}\right)
$$

$\xi^{\alpha}:$ coordinates, $\phi^{a}(\xi):$ fields, $\partial_{\alpha}=\frac{\partial}{\partial \xi^{\alpha}}$
α : coord. index $\alpha=0,1, \ldots, p$
a : field index $a=1, \ldots, m$
i : index for various symmetries

$$
\delta \phi^{a}(\xi)={ }^{i} h_{i}^{a}(\phi(\xi))
$$

Leaves \mathcal{L} invar. to first order.
1.

$$
\frac{\partial \mathcal{L}}{\partial \phi^{a}} \delta \phi^{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} \phi^{a}\right)} \partial_{\alpha}\left(\delta \phi^{a}\right)=0
$$

3.

$$
J^{\mu} \rightarrow J_{i}^{\alpha} \rightarrow{ }^{i} J_{i}^{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} \phi^{a}\right)} \delta \phi^{a}
$$

Similar to mechanics: $\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta q$
Claim: Given this transformation leaves \mathcal{L} invar. to first order then:
2.

$$
\partial_{\alpha} J_{i}^{\alpha}=0 \forall i \text { Conserved Current }
$$

Check this yourself using 1. and the $E-L$ equations of motion. Done in book as well.

Conserved charge too:

$$
Q_{i}=\int J_{i}^{O}(\xi) d \xi^{1} d \xi^{2} \ldots d \xi^{p}
$$

Answer independent of time.

$$
\frac{d Q}{d \xi^{O}}=0
$$

Nambu-Gotta action:

$$
S=\int \underbrace{d \xi^{0}}_{d \tau} \underbrace{d \xi^{1}}_{d \sigma} \mathcal{L}\left(\partial_{0} x^{\mu}, \partial_{1} x^{\mu}\right)
$$

This means $\alpha=0,1$. $\phi^{a}=x^{\mu} \Rightarrow a=0, \ldots, d=$ spatial dimension
Let's look for asymmetry. A variation of the field that leaves the field invar.

$$
\delta x^{\mu}={ }^{\mu}=\text { constant }
$$

Constant translations of a worldsheet should by asymmetric. Why would NambuGotta action care if rigidally moved worldsheet through time or space? So:

$$
\begin{gathered}
\delta\left(\partial_{0} x^{\mu}\right)=\partial_{0}\left(\delta x^{\mu}\right)=0 \\
\delta\left(\partial_{1} x^{\mu}\right)=0
\end{gathered}
$$

So $\delta x^{\mu}={ }^{\mu}$ indeed asymmetric.
Apply (3)

$$
\begin{gathered}
{ }^{\mu} J_{\mu}^{\alpha}={\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} x^{\mu}\right)}{ }^{\mu}}_{J_{\mu}^{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} x^{\mu}\right)}}^{\left(J_{\mu}^{0}, J_{\mu}^{1}\right)=\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}}, \frac{\partial \mathcal{L}}{\partial x^{\mu}}\right)=\left(\mathcal{P}_{\mu}^{\tau}, \mathcal{P}_{\mu}^{\sigma}\right)}
\end{gathered}
$$

Conservation law: $\partial_{\alpha} J^{\alpha}=0$ gives us collection of conservation laws for μ.

$$
\partial_{\alpha} J^{\alpha}=0=\frac{\partial \mathcal{P}_{\mu}^{\tau}}{\partial \tau}+\frac{\partial \mathcal{P}_{\mu}^{a}}{\partial a}
$$

$P_{\mu}(\tau)=\int_{0}^{\sigma_{1}} \mathcal{P}_{\mu}^{\tau}(\tau, \sigma) d \sigma$ conserved quantity indexed by spacetime index μ.
$P_{\mu}(\tau)$: conserved momentum for the string not dependent on τ since conserved.
Check P_{μ} is conserved

$$
\begin{aligned}
\frac{d P_{\mu}}{d \tau} & =\int_{0}^{\sigma_{1}} \frac{\partial \mathcal{P}_{\mu}^{\tau}}{\partial \tau}(\tau, \sigma) d \sigma \\
& =-\int_{0}^{\sigma_{1}} \frac{\partial \mathcal{P}_{\mu}^{\sigma}}{\partial \sigma} d \sigma \\
& =\left[-\mathcal{P}_{\mu}^{\sigma}\right]_{0}^{\sigma_{1}}
\end{aligned}
$$

This yields the free BCs.

This is the hardest part of the course. After this, it gets easier.
A momentum is in general a variation of a Lagrangian with respect to a velocity $\operatorname{eg} \frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}}$ conserved, has units of momentum. We will see this is indeed the relative momentum of a piece of string.

When we had (ρ, \vec{J}) :
$[\rho]=\frac{Q}{L^{3}}$
$[\vec{J}]=\frac{Q}{T L^{2}}$
Now we have $\left(\mathcal{P}_{\mu}^{\tau}, \mathcal{P}_{\mu}^{\sigma}\right)$:
$\left[\mathcal{P}_{\mu}^{\tau}\right]=\frac{P_{\mu}}{L}$
$\left[\mathcal{P}_{\mu}^{\sigma}\right]=\frac{P_{\mu}}{T}$
Call \mathcal{P}_{μ}^{τ} momentum density, and $\mathcal{P}_{\mu}^{\sigma}$ momentum current.
Okay, we have:

$$
\frac{d P_{\mu}}{d \tau}=0
$$

But would like:

$$
\frac{d P_{\mu}}{d t}=0
$$

Conserved for Lorentz observer. Is this the case? (Yes).
Sure, could work in static gauge. $\tau=t \Rightarrow \frac{d P_{\mu}}{d t}=0$
But what about an arbitrary τ curve on worldsheet?
Look for a generalization formula (clue from divergence theorem)
$A=$ flux of vector field

$$
\oint\left(A^{x} d y-A^{y} d x\right)=\int_{R}\left(\frac{\partial A^{x}}{\partial x}+\frac{\partial A^{y}}{\partial y}\right) d x d y
$$

$$
\oint_{\Gamma}\left[\mathcal{P}_{\mu}^{\tau} d \sigma-\mathcal{P}_{\mu}^{\sigma} d \tau\right]={ }_{R}\left(\frac{\partial \mathcal{P}^{\tau}}{\partial \tau}+\frac{\partial \mathcal{P}^{\sigma}}{\partial \sigma}\right) d \tau d \sigma=0
$$

Given an arbitrary curve γ, claim momentum given by:

$$
P_{\mu}(\gamma)=\int_{\gamma}\left[\mathcal{P}_{\mu}^{\tau} d \sigma-\mathcal{P}_{\mu}^{\sigma} d \tau\right]
$$

$$
\begin{gathered}
\gamma=\alpha \rightarrow \gamma_{2} \rightarrow \beta \rightarrow-\gamma_{1} \\
\left(\int_{\gamma_{2}}+\int_{\alpha}+\int_{-\gamma_{1}}+\int_{\beta}\right) \underbrace{\left(\mathcal{P}_{\mu}^{\tau} d \sigma-\mathcal{P}_{\mu}^{\sigma} d \tau\right)}_{\kappa}=0 \\
\int_{\alpha} \kappa=\int_{\beta} \kappa=0 \\
P_{\mu}\left(\gamma_{1}\right)=P_{\mu}\left(\gamma_{2}\right)
\end{gathered}
$$

Usually will use $P_{\mu}(\tau)=\int_{0}^{\sigma_{1}} \mathcal{P}_{\mu}^{\tau}(\tau, \sigma) d \tau$ with constant τ, but nice to have this general formulation.

Lorentz Transformation

$$
x^{\mu}=L_{\nu}^{\mu} x^{\nu}
$$

Leaves $\eta_{\mu \nu} x^{\mu} x^{\nu}$ invar. Vary x^{μ} subject to x^{ν}

$$
\delta x^{\mu}==^{\mu \alpha} x_{\alpha}
$$

$$
\begin{aligned}
\delta\left(\eta_{\mu \nu} x^{\mu} x^{\nu}\right) & =2 \eta_{\mu \nu}^{\mu \alpha} x_{\alpha} x^{\nu} \\
& =2^{\mu \alpha} x_{\alpha} x_{\mu}
\end{aligned}
$$

where $\eta_{\mu \nu} x^{\nu}=x_{\mu}$
If we want $\delta\left(\eta_{\mu \nu} x^{\mu} x^{\nu}\right)=0$, we make antisymmetric.

$$
\mu \nu=-\nu \mu
$$

Claim:

$$
\delta\left(\eta_{\mu \nu} \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu}\right)=0
$$

So Nambu-Gotta action invar and get new set of symmetries:

$$
\begin{gathered}
\delta x^{\mu}(\tau, \sigma)={ }^{\mu \nu} x_{\nu}(\tau, \sigma) \\
{ }^{\mu \nu} J_{\mu \nu}^{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} x^{\mu}\right)} \delta x^{\mu}=\mathcal{P}_{\mu}^{\alpha} \delta x^{\mu}=\mathcal{P}_{\mu}^{\alpha \mu \nu} x_{\nu} \\
{ }^{\mu \nu} J_{\mu \nu}^{\alpha}=-\frac{1}{2}{ }^{\mu \nu}\left(x_{\mu} \mathcal{P}_{\nu}^{\alpha}-x_{\nu} \mathcal{P}_{\mu}^{\alpha}\right)
\end{gathered}
$$

No physical relevance to $-\frac{1}{2}$
So define:

$$
m_{\mu \nu}^{\alpha}(\tau, \sigma)=x_{\mu} \mathcal{P}_{\nu}^{\alpha}-x_{\nu} \mathcal{P}_{\mu}^{\alpha}
$$

Conserved currents: $\partial_{\alpha} m_{\mu \nu}^{\alpha}=0$

$$
M_{\mu \nu}=\int_{0}^{\sigma_{1}} m_{\mu \nu}^{0} d \sigma
$$

Conserved Charge

$$
M_{i j}=\int_{0}^{\sigma} m_{i j} d \sigma=\int_{0}^{\sigma_{1}}\left(x_{i} \mathcal{P}_{j}^{\tau}-x_{j} \mathcal{P}_{i}^{\tau}\right) d \sigma={ }_{i j k} L_{k}
$$

$123=+1$, totally antisymmetric. eg:

$$
\begin{gathered}
M_{12}=\int_{0}^{\sigma_{1}}\left(x_{1} \mathcal{P}_{2}^{\tau}-x_{2} \mathcal{P}_{1}^{\tau}\right) d \sigma={ }_{12 l} L_{k}=L_{3} \\
\vec{L}=\vec{r} \times \vec{p}
\end{gathered}
$$

So $M_{i j}=$ angular momentum, conserved.
Angular momentum of rotating string:

$$
\begin{gathered}
M_{12}=L_{3}=J=\int_{0}^{\sigma_{1}}\left(x_{1} \mathcal{P}_{2}^{\tau}-x_{2} \mathcal{P}_{1}^{\tau}\right) d \sigma \\
\vec{x}(t, \sigma)=\frac{\sigma_{1}}{\pi} \cos \left(\frac{\pi \sigma}{\sigma_{1}}\right)\left(\cos \left(\frac{\pi c t}{\sigma_{1}}\right), \sin \left(\frac{\pi c t}{\sigma_{1}}\right)\right)
\end{gathered}
$$

Parametrized String

$$
\begin{gathered}
\overrightarrow{\mathcal{P}}^{\tau}=\frac{T_{0}}{c^{2}} \frac{\partial \vec{x}}{\partial t}=\frac{T_{0}}{c} \cos \frac{\pi \sigma}{\sigma_{1}}\left(-\sin \left(\frac{\pi c t}{\sigma_{1}}\right), \cos \left(\frac{\pi c t}{\sigma_{1}}\right)\right) \\
x_{1} P_{2}-x_{2} P_{1}=\left(\frac{\sigma_{1}}{\pi}\right)^{2} \frac{T_{0}}{c} \cos ^{2}\left(\frac{\pi \sigma}{\sigma_{1}}\right) \\
J=\frac{1}{2 \pi T_{0} c} E^{2} \\
\frac{E}{T_{0}}=\sigma_{1}
\end{gathered}
$$

