$$
\begin{array}{r}
\vec{x}(t, \sigma)=\frac{1}{2}(\vec{F} \overbrace{(c t+\sigma)}^{u}+\vec{G} \overbrace{(c t-\sigma)}^{v}) \\
=\frac{1}{2}(\vec{F}(u)+\vec{G}(v)) \\
\left(\frac{1}{c} \frac{\partial \vec{x}}{\partial t} \pm \frac{\partial \vec{x}}{\partial \sigma}\right)^{2}=1 \\
\frac{1}{c} \dot{\vec{x}}+\vec{x}^{\prime}=\vec{F}^{\prime}(c t+\sigma) \\
\frac{1}{c} \dot{\vec{x}}-\vec{x}^{\prime}=\vec{G}^{\prime}(c t-\sigma) \\
\frac{1}{c} \dot{\vec{x}}=\frac{1}{2}\left(\vec{F}^{\prime}+\vec{G}^{\prime}\right) \\
\vec{x}^{\prime}=\frac{1}{2}\left(\vec{F}^{\prime}-\vec{G}^{\prime}\right) \\
\left|\vec{F}^{\prime}(u)\right|=\left|\vec{G}^{\prime}(v)\right|=1 \\
\vec{x}\left(t, \sigma+\sigma_{1}\right)=\vec{x}(t, \sigma) \\
\vec{F}\left(u+\sigma_{1}\right)+\vec{G}\left(v-\sigma_{1}\right)=\vec{F}(u)+\vec{G}(v) \\
\vec{F}\left(u+\sigma_{1}\right)-\vec{F}(u)=\vec{G}(v)-\vec{G}\left(v-\sigma_{1}\right)
\end{array}
$$

2 Periodicity Conditions:

$$
\begin{array}{r}
\vec{F}^{\prime}\left(u+\sigma_{1}\right)=\vec{F}^{\prime}(u) \\
\vec{G}^{\prime}\left(v+\sigma_{1}\right)=\vec{G}^{\prime}(v) \\
\vec{F}(u)=\underbrace{\hat{F}(u)}_{\text {strictly periodic fcn of } u}+\vec{\alpha} u
\end{array}
$$

Unit Sphere in 3D

\vec{F}^{\prime} is a unit vector (so goes from origin to surface). Traces a closed curve on surface, periodic.

$\overrightarrow{G^{\prime}}$ traces another curve

Usually, these paths cross at least two times at point $\left(u_{0}, v_{0}\right)$ subject to $\vec{F}^{\prime}\left(u_{0}\right)=$ $\vec{G}^{\prime}\left(v_{0}\right)$.
(u_{0}, v_{0}) determines $\left(t_{0}, \sigma_{0}\right)$.
Thus $\frac{1}{c} \dot{\vec{x}}\left(t_{0}, \sigma_{0}\right)=\frac{1}{2}\left(\vec{F}^{\prime}\left(u_{0}\right)+\vec{G}^{\prime}\left(v_{0}\right)\right)=\vec{F}^{\prime}\left(u_{0}\right)$

$$
\left|\dot{\vec{x}}\left(t_{0}, \sigma_{0}\right)\right|=c\left|\vec{F}^{\prime}\left(u_{0}\right)\right|=c
$$

At one point at a time, string moving at speed of light!

$$
\underbrace{\vec{x}^{\prime}\left(t_{0}, \sigma_{0}\right)}_{0}=\frac{1}{2}\left(\vec{F}^{\prime}\left(u_{0}\right)-\vec{G}^{\prime}\left(v_{0}\right)\right)
$$

What does the string look like at this time t_{0} at positions near σ_{0} ?

$$
\begin{aligned}
x\left(t_{0}, \sigma \approx \sigma_{0}\right) & =x\left(t_{0}, \sigma_{0}\right)+\left(\sigma-\sigma_{0}\right) \cdot \overbrace{x^{\prime}\left(t_{0}, \sigma_{0}\right)}^{0}+\frac{1}{2}\left(\sigma-\sigma_{0}\right)^{2} x^{\prime \prime}\left(t_{0}, \sigma_{0}\right)+\ldots \\
& =\overrightarrow{x_{0}}+\left(\sigma-\sigma_{0}\right)^{2} \vec{T}_{0}+\ldots
\end{aligned}
$$

where $\vec{T}_{0}=\frac{1}{2} x^{\prime \prime}\left(t_{0}, \sigma_{0}\right)$ etc.

String has cusp singularity.
Align $x y$ axis subject to:

Find $y \approx|x|^{\frac{2}{3}}$
Imagine string survived early universe, very long (across universe), with lots of tension, gigantic μ_{0}. What would happen if crossing the room?

We wouldn't feel any gravitational attraction! Einstein's gravity says sometihng with mass will gravitate. But the μ_{0} and the tension conspire to make no gravity.

Does affect geometry of space. If measure radisu of string and go in same radius circle around, don't get circumference $/$ radius $=2 \pi$.

Creates a conical singularity!

Conical singularity of a cosmic string \exists ongoing searches for these. False alarm 1.5 years ago.

Deficit angle: $\delta=8 \pi G T_{0} / c^{4}=8 \pi G \mu_{0} / c^{2} . \mu_{0}=T_{0} / c^{2}$.
Recall $G=\hbar c / M_{p}^{2}$. M_{p} : Planck Mass. Got M_{p} from G, \hbar, c. Construct now M_{p} from μ_{0}, \hbar, c.

$$
\begin{gathered}
{\left[\mu_{0}\right]=M / L} \\
{[t]=M L^{2} / T=M L[c]} \\
{\left[\mu_{0}\right]=M /[\hbar][c]=M^{2}[c] /[\hbar]}
\end{gathered}
$$

So $\mu_{0}=M_{s}^{2} c / \hbar . M_{s}$ is string mass.

$$
\delta=8 \pi\left(\frac{\mu_{s}}{\mu_{p}}\right)^{2}
$$

$\delta \approx 5.2 "\left(G \mu_{0} / 10^{-6}\right) . ":$ seconds or arc, $c=1$.
Example: If knew $\delta=0.5^{\prime \prime}, \mu_{0}=1.3 \times 10^{20} \mathrm{~kg} / \mathrm{m}$.
Can look for δ

See 2 images with angle between.

What is $\mathcal{P}_{\mu}^{\sigma}$?
Recall Maxwell: $\nabla \cdot E=\rho . \nabla \times B=\frac{1}{c} \vec{J}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$.

$$
\nabla \cdot(\nabla \times \vec{B})=0 \quad(\text { for any } B)
$$

$$
\begin{gathered}
\frac{1}{c} \nabla \cdot \vec{J}+\frac{1}{c} \frac{\partial \nabla \cdot E}{\partial t}=0 \\
\nabla \cdot \vec{J}+\frac{\partial \rho}{\partial t}=0
\end{gathered}
$$

Charge Conservation:

$$
\begin{gathered}
\frac{1}{c} \frac{\partial}{\partial t}(\rho c)+\partial_{i} J^{i}=0 \\
\frac{\partial}{\partial x^{\mu}} J^{\mu}=0
\end{gathered}
$$

Define Charge:

$$
\begin{gathered}
Q=\int d^{3} x \rho(t, \vec{x}) \\
\frac{d Q}{d t}=\int d^{3} x d \rho(t, \vec{x}) / d t=-\int d^{3} x \nabla \cdot \vec{J}=-\int d \vec{a} \cdot \vec{J}
\end{gathered}
$$

ρ : charge density Q / L^{3} (density over volume)
\vec{J} : current density $Q / T L^{2}$ (density over area)

Mechanics

Lagrangian: $L(q(t), \dot{q}(t) ; t)$
Symmetry: a rule to change any path $q(t)$ subject to L is unchanged. There exists other kinds of symmetries too. Rule may depend on path.

Rule:

$$
q(t) \rightarrow q(t)+\delta q(t)
$$

where $\delta q(t)=\epsilon \cdot h(q(t) ; t) . h$ is a magic function. ϵ : small number. Accordingly:

$$
\dot{q}(t)=q(t)+\frac{d}{d t}(\delta q(t))
$$

Theorem: If under these changes the terms linear is δq vanish in δL, then we get a conserved charge:

$$
\epsilon Q=\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q
$$

Claim: $\frac{d Q}{d t}=0$

$$
\frac{d}{d t}(\epsilon Q)=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d}{d t}(\delta q)
$$

Euler Lagrange Equation of Motion:

$$
\frac{\partial}{\partial t}\left(\frac{\partial L}{\partial q}\right)-\frac{\partial L}{\partial \epsilon}=0
$$

Used to write:

$$
\frac{d(E Q)}{d t}=\left(\frac{\partial L}{\partial q}\right) \delta q+\left(\frac{\partial L}{\partial \dot{q}}\right) \delta \dot{q}=\delta L=0
$$

Example:
$L=L(\dot{q}(t)) . L$ only dependent on velocity. Then have symmetry $\delta q(t)=\epsilon$. The have $\delta \dot{q}=0 . L$ invariant (so is symmetric).

$$
\begin{gathered}
Q=\frac{\partial L}{\partial \dot{\epsilon}}=p \\
S=\int d \xi^{0} d \xi^{1} \ldots d \xi^{p} \mathcal{L}\left(\phi^{a}, \partial_{\alpha} \phi^{a}\right) \\
\alpha \rightarrow 0, \ldots, p
\end{gathered}
$$

Fields: ϕ^{a}.
Nambu-Gotta:

$$
\xi^{\alpha}(\tau, \sigma)=\int d \tau \int d \sigma \mathcal{L}\left(\frac{\partial x^{\mu}}{\partial \tau}, \frac{\partial x^{\mu}}{\partial \sigma}\right.
$$

Will find there are conserved currents of form $\frac{\partial}{\partial \xi^{\alpha}}\left(J_{i}^{\alpha}\right)$

