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8.251 Final Exam


B. Zwiebach Wednesday May 23, 2007 

Only personal 3-page notes allowed. 
Formula sheets on the last two pages. 
Test duration: 3 hours. 

PROBLEM 1. (25 points) Quantum version of the rotating open string. 

We have learned that in the classical theory a rigidly rotating open string has angular momentum 
J = α ′ M2 . In this problem we explore how this relation is modified for general states in the 
quantum theory. 

We focus on the (Hermitian) angular momentum operator J in the (x2, x3) plane: 

∞ 

M23 1 (2) 
α(3) (3) 

α(2) J = = −i 
n

α−n n − α−n n . 
n=1 

In the relation 
α ′ M2 + 1 = N⊥ , 

we separate out the contributions from the the x2 and x3 directions by writing 

∞ 

N⊥ = ′ , = 
� 

α
(2) 

α(2) + α
(3) 

α(3) ,N23 + N N23 −n n −n n 

n=1 

′ where N denotes the number operator for the other transverse directions. 

To facilitate our analysis we introduce new oscillators αn and ᾱn defined as 

1 1 
(α(2) + iα(3) (α(2) − iα(3) αn ≡ √

2
n n ) , ᾱn ≡ √

2
n n ) . 

Note that (αn)† = ᾱ−n. 

(a) Give the commutators of the αn and ᾱn oscillators. Rewite J in terms of the αn and ᾱn 

oscillators. Rewite N23 in terms of the αn and ᾱn oscillators. 

(b) Consider general states of the theory, now written in terms of the αn and ᾱn oscillators: 

∞ 

|λ� = . . . (α−k)
λk (ᾱ−k)

λk |p +, �pT � 
k=1 

where λk and λ̄k are arbitrary positive integers and the dots represent products of oscillators 
in directions other than two and three. Give the eigenvalues of J and N23 on the state |λ�. 

(c) Formulate and prove an inequality that relates the eigenvalues of J and those of 1 + α ′ M2 . 
[Suggestion: begin by comparing the eigenvalues of J to those of N23.] 

(d) Calculate both J and 1 + α ′ M2 for the state (α−1)
N |p+, �pT �. 
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PROBLEM 2. (25 points) Cosmic string in de Sitter space.


The Nambu-Goto action on a curved spacetime with metric gµν(x) can be written as before


1 
� 

S = −
2πα′ 

dτdσ (Ẋ · X ′)2 − (Ẋ)2(X ′)2 

where all dot products use the metric gµν (instead of the flat Minkowski metric ηµν) 

Ẋ X ′ = gµν(X)ẊµXν ′ , (Ẋ)2 = gµν(X)ẊµẊν , (X ′ )2 = gµν(X)X ′ 
µ
X ′

ν 
.· 

We consider strings in an expanding four-dimensional de Sitter spacetime, for which the metric gµν 

can be taken to be diagonal, with values 

g00 = −1 , g11 = g22 = g33 = e 2Ht . 

We are taking c = � = 1. The Hubble constant H has natural units of one over length (or one over 
time) so that Ht is dimensionless. 

(a) Assume X0 ≡ t = τ and write Xµ = {X0 ,X� }. Write the Nambu-Goto action in terms of t 
and σ derivatives of X� . 

(b) Consider now a circular string on the (x1, x2) plane, namely 

X1(t, σ) = r(t) cos σ , X2(t, σ) = r(t) sin σ , σ ∈ [0, 2π] , 

where r(t) is a radius function to be determined. Use this ansatz to simplify the string action 
and perform the integration over σ. Write the resulting action as 

S = dt L(ṙ(t), r(t); t) 

and give the explicit form of L(ṙ(t), r(t); t), which is explicitly time dependent. Because 
of the e2Ht factors in the metric, the physically measured radius of the string is actually 
R(t) = eHt r(t). Write the Lagrangian in terms of R and Ṙ. 

(c) Consider strings with constant R and use the Lagrangian to give the potential V (R) for such 
strings. Plot this potential and verify that it is well-defined only if R ≤ 1/H . Find a critical 
point of the potential and the corresponding value of R (in terms of H). Is this static string 
in stable equilibrium? 

(d) Use the Lagrangian for R and Ṙ to calculate the corresponding Hamiltonian, expressed as 
a function of R and Ṙ. Simplify your answer. Is this Hamiltonian function conserved for 
physical motion? 
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PROBLEM 3. Three short questions (20 points). 

(a) Express the open string state 
L⊥ 

−2−2L
⊥ |0� 

in terms of normal-ordered oscillators acting on the zero-momentum ground state |0�. 

(b) State the field content of the massless spectrum of a configuration of N coincident Dp-branes 
(let d denote the number of spatial dimensions). What happens to the massless spectrum 
when we add a coincident orientifold Op-plane? 

(c) Two infinite D2-branes intersect at right angles. Recalling that the light-cone gauge requires 
that the X1 coordinate have Neumann boundary conditions at both ends, we take the first 
D2-brane to extend in the 1- and 2-directions, and the second D2-brane to extend in the 1
and 3-directions. Calculate the value of M2 for all tachyons in the sector that contains the 
open strings that stretch from one brane to the other. Where do these tachyons live? 

PROBLEM 4. (30 points) Counting states in Heterotic SO(32) string theory. 

In heterotic (closed) string theory the right-moving part of the theory is that of an open super
string. It has an NS sector whose states are built with oscillators αI and bI acting on the NS −n −r 

vacuum. It also has an R sector whose states are built with oscillators αI and dI acting on the −n −n 

R ground states. The index I runs over 8 values. The standard GSO projection down to NS+ and 
R− applies. 

The left-moving part of the theory is that of a peculiar bosonic open string. The 24 transverse 
coordinates split into eight bosonic coordinates XI with oscillators ᾱ−

I
n and 16 peculiar bosonic 

coordinates. A surprising fact of two-dimensional physics allows us to replace these 16 coordinates 
by 32 two-dimensional left-moving fermion fields λA, with A = 1, 2, . . . , 32. The (anticommuting) 
fermion fields λA imply that the left-moving part of the theory also has NS ′ and R ′ sectors, denoted 
with primes to differentiate them from the standard NS and R sectors of the open superstring. 

The left NS ′ sector is built with oscillators ᾱI and λA acting on the vacuum NS ′ �L, declared −n −r 

to have (−1)FL = +1: 
|

(−1)FL |NS ′ �L = +|NS ′ �L . 

The naive mass formula in this sector is 

α ′ M2 =
1 

ᾱI ᾱI +
1 

r λA λA .L −n n −r r2 2 
=0 n 6 r∈Z+ 1 

2 

The left R ′ sector is built with oscillators ᾱI and λA acting on a set of R ′ ground states. The −n −n 

naive mass formula in this sector is 

α ′ M2 =
1 

ᾱI ᾱI + n λA λA .L −n n −n n2 
n 6=0 

Momentum labels are not needed in this problem so they are omitted throughout. 
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(a) Consider the left NS ′ sector. Write the precise mass-squared formula with normal-ordered 
oscillators and the appropriate normal-ordering constant. The GSO projection here keeps the 
states with (−1)FL = +1; this defines the left NS ′ + sector. Write explicitly and count the 
states we keep for the three lowest mass levels, indicating the corresponding values of α ′ ML

2 . 
[This is a long list.] 

(b) Consider the left R ′ sector. Write the precise mass-squared formula with normal-ordered 
oscillators and the appropriate normal-ordering constant. We have here 32 zero modes λA 

0 . 
As usual, half of the ground states have (−1)FL = +1 and the other half have (−1)FL = −1. 
Let |Rα�L denote ground states with (−1)FL = +1. How many ground states |Rα�L are there? 
Keep only states with (−1)FL = +1; this defines the left R ′ + sector. Write explicitly and 
count the states we keep for the two lowest mass levels, indicating the corresponding values 
of α ′ ML

2 . [This is a shorter list.] 

At any mass level α ′ M2 = 4k of the heterotic string, the spacetime bosons are obtained by 
“tensoring” all the left states (NS ′ + and R ′ +) with α ′ ML 

2 = k with the right-moving NS+ states 
with α ′ MR 

2 = k. Similarly, the spacetime fermions are obtained by tensoring all the left states 
(NS ′ + and R ′ +) with α ′ ML 

2 = k with the right-moving R− states with α ′ MR 
2 = k. At any mass 

level where either left states or right states are missing, one cannot form heterotic string states. 

(c) Are there tachyonic states in heterotic string theory? Write out the massless states of the 
theory (bosons and fermions) and describe the fields associated with the bosons. Calculate 
the total number of states in heterotic string theory (bosons plus fermions) at α ′ M2 = 4. 
(This is a large number!) 

(d) Write a generating function fL(x) = r a(r)xr for the full set of (GSO truncated) states in 
the left-moving sector (include both NS ′ + and R ′ + states). Use the convention where a(r) 
counts the number of states with α ′ ML 

2 = r. 
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Possibly Useful Formulas 

1 � � 

Light-Cone Coordinates: x ± = √
2 

x 0 ± x 1 . 

Relativistic Point Particle in Light-Cone Coordinates: x + = 
p+ 

τ , p − =
1 � 

p I p I + m 2 
� 

. 
m2 2p+ 

1 
Slope Parameter: α ′ = . 

2πT0 

Light-Cone Gauge: 

2 for open strings 
X+ = βα ′ p + τ, where β = 

1 for closed strings , 

1 1 Pτµ 

2πα′ 
Ẋµ Pσµ −

2πα′ 
Xµ′ 

= , = , 

(Ẋ ± X ′ )2 = 0 = ⇒ Ẋ− ± X−′ 
=

2βα

1 
′ p+ 

� 

ẊI ± XI ′�2 
, 

¨ ′′ 
Xµ − Xµ = 0 . 

µ −inτ Open String Expansion: Xµ(τ, σ) = x0 + 
√

2α′ αµ 
0 τ + i

√
2α′ 

1 
αn

µ e cosnσ . 
n 

n6=0 

Closed String Expansion: Xµ(τ, σ) = x0 
µ + 

√
2α′ α0 

µ τ + i
α′ � e−inτ 

� 

αn
µ e inσ + ᾱn

µ e −inσ
� 

. 
2 n 

n6=0 

αµMomentum: αµ 
0 = 

√
2α′ pµ (open strings) , 

0 = 
α′ 

pµ (closed strings). 
2 

Commutators, Creation and Annihilation Operators: 

αI I i δIJ I, αJ = nδm+n,0 δ
IJ , x , αJ = 

√
2α′ , x , αJ = 0 if n �= 0 ,n m 0 0 0 n 

αI I αI I† 
� 

I J†
� 

for n ≥ 1: = 
√

n a , = 
√

n a , a , a = δIJ δmn . n n −n n m n 

Virasoro Algebra (Open Strings): 

∞ 
1 1 � � 

α− = √
2α′ p+ 

L⊥ , where L⊥ ≡
2 

αI αI , L⊥ , αJ = −nαJ ,n n n n−p p m n m+n 

p=−∞ 

� � 1 � � 

L⊥ , L⊥ = n)L⊥ + m(m 2 − 1)(D − 2)δm+n,0 , L⊥ , x I = −i
√

2α′ αI ,m n (m − m+n m 0 m12 
∞ ∞ 

L⊥ α ′ I I N⊥ αI αI I† I 
0 = p p + N⊥ , = −p p = n a n a n ,


p=1 n=1


M2 = −p 2 = 2 p + p − − p I p I = 
α

1 
′ 

� 

N⊥ − 1 
� 

. 

Virasoro Algebra (Closed Strings): 
� � 

∞ ∞ 

αn 
− = 

p

1 
+ α

2 
′ 
Ln 
⊥ , ᾱn 

− = 
p

1 
+ α

2 
′ 
L̄n 
⊥ , Ln 

⊥ ≡ 1
2 

αn
I 
−p αp

I , L̄n 
⊥ ≡ 1

2 
ᾱn

I 
−p ᾱp

I , 
p=−∞ p=−∞ 

∞ ∞ 
α ′ � � 

L⊥ I I N⊥ αI αI I† I 
0 = p p + N⊥ , = −p p = n a n an ,4 

p=1 n=1 

∞ ∞ 
α ′ � �


L̄⊥ = p I p I + N̄⊥ , N̄⊥ = ᾱI ᾱI = n āI† āI ,
0 −p p n n4 
p=1 n=1 

M2 = −p 2 = 2 p + p − − p I p I = 
α

2 
′ 

� 

N⊥ + N̄⊥ − 2 
� 

, N̄⊥ = N⊥ . 

5 



� 

� �


�
 �


�
 � �


�


� � 

NS-sector: 

Ground state: (−1)F = −1 : |NS�.

Normal ordering constant for NS fermion: aNS = 1
−48 .


Mass-squared: α ′ M2 = −2
1 + N⊥ .


α ′ M2 = −1 , N⊥ = 0 : |NS� ,2 

α ′ M2 = 0 , N⊥ = 1 : bI NS� ,2 −1/2|
α ′ M2 1 

� 

αI bJ 
� 

= , N⊥ = 1 : −1 , bI |NS� ,2 −1/2 −1/2 

α ′ M2 3 
� 

αI bJ bK 
� 

= 1 , N⊥ = : −1b
J , bI , bI NS� .2 −1/2 −3/2 −1/2 −1/2 −1/2 |

NS+ sector: (−1)F = +1. Integer α ′ M2 . 

R-sector: 

8 zero modes: 4 creation + 4 annihilation. 4 creation 24 = 16 ground states. → →
Ground states: (−1)F = −1 : |Ra�, a = 1, . . . 8 , and (−1)F = +1 : |Rā�, ā = 1̄, . . . 8̄ . 

1Normal ordering constant for Ramond fermion: aR = +24 . 

Mass-squared: α ′ M2 = N⊥ . 

α ′ M2 = 0 : |Ra� �

�

� 

|Rā�

α ′ M2 αI 

� αI
= 1 : −1|Ra� , dI |Rā� −1|Rā� , dI |Ra�,−1 −1

α ′ M2 = 2 : {αI 
−1α

J 
−1d

J 
�

� 

−2 , αI 
−1 , d

I R¯−2 , αI 
−1 , d

I {αI 
−1α

J 
−1d

J 
−1}|Ra� 

� 

−1}| a� 
{αI 

−1 , dI {αI 
−1 , dI 

−1d
J 

−2}|Rā� −1d
J 

−2}|Ra� 

Left of bars: (−1)F = −1, the R− sector. Right of bars: (−1)F = +1, the R+ sector. 

∞ 
1 +
 x
n−

1

2 
�8 

∞ 
1 −
 x
n−

1

2 
�8

∞ 
1 +
 x
n �81


fNS+(x) 8 = fR−(x)= 
xn2

√
x 

− =
 .

1 −
 1 − xn

n=1 
1 − xn 

n=1 n=1 

Dp-brane: Oscillators: αi
n, i = 2, 3, . . . , p and αa

n , a = p + 1, . . . , d. 

Ground states: |p+, �p� , p� = (p2 , . . . pp). 

Mass-squared: α ′ M2 = −1 + 
�∞ αi αi + αa αa . n=1 −n n −n n 

Dp-brane and coincident Op: 

Ωp action: Ωp α
i Ω−1 = (−1)nαi , Ωp αa Ω−1 = (−1)nαa , ground states invariant. n p n n p n

N parallel Dp-branes: Ground states |p+, �p ; [j k]� , j, k = 1, 2, . . . , N , p� = (p2 , . . . pp). 

If present, Ωp action on the ground states Ωp|p+ , �p ; [j k]� = |p+, �p ; [k j]� 
1 1Normal ordering constants: aNN = aDD = −24 , aND = aDN = +48 . 
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