MIT OpenCourseWare http://ocw.mit.edu

8.13-14 Experimental Physics I & II "Junior Lab" Fall 2007 - Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

8.13 Statistics Assignment

Teaching Staff*
MIT Department of Physics
(Dated: September 10, 2007)

Types of errors, parent and sample distributions. Error propagation. Due September 17,18 - 2007

1. READING

- Bevington & Robinson Chapters 1-4.2
- Helpful: J. R. Taylor "An Introduction to Error Analysis"

2. SUMMARY/OVERVIEW:

When quoting your results in Junior Lab, you are expectred to give a solid statistical error and an estimate of the systematic error. Note: statistical errors come solely from REPEATED, independent, measurements.

Errors are not mistakes but uncertainties in measurements:

- a) Random Errors, σ jitter of measurements around the true value, μ .
- b) Systematic Errors, Δ deviation from truth by faulty knowledge/equipment.

If we make N measurements $x_1, x_2, \dots x_N$ and quote the result

$$x_{result} = x_{best} \pm s_x \pm \Delta x$$
 (1)

then usually:

$$x_{best} = \langle x \rangle = \frac{1}{N} \sum x_i \quad \text{mean}$$
 (2)

$$s_x = \frac{1}{N-1} \sum (x_i - \langle x \rangle)^2$$
 std. dev. (3)

 $\Delta x = \text{estimate of unmeasured 'systematic' effect}(4)$

If x_i came from a parent or population distribution with probability density p(x), the population mean $\mu = \lim_{N \to \infty} \langle x \rangle$ and variance $\sigma_x^2 = \lim_{N \to \infty} s_x^2$.

Note:
$$\langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$
.

Some common parent distributions are:

a) Gaussian:

b) Poisson:

$$p(x) = \frac{\mu^x}{x!} e^{-\mu}$$
 with variance $\sigma = \sqrt{\mu}$. (6)

c) Lorentian:

$$p(x) = \frac{1}{\pi} \frac{\Gamma/2}{(x-\mu)^2 + (\Gamma/2)^2}$$
 FWHM: $|x-\mu| = \pm \Gamma/2$ (7)

In general, these distributions govern experiments with: a) high statistics ($\mu \geq 20$), b) low statistics ($\mu < 20$) and c) distributions of photons with line width $\Gamma = \hbar/E$.

3. ERROR ANALYSIS

Counting Experiments:

Result = $(N \pm \sqrt{N})$ for distributions (5) and (6).

Continuous Experiments:

Result = $T \pm \sigma_T$ (temperature T_i , voltage, etc...) T_i are most likely Gaussian distributed, if your measurements are independent (i.e. the measurements are uncorrelated and do not depend on each other). The variance σ you obtain from fitting a Gaussian to your distribution of values depends, for example, on the coarseness of the scale of your thermometer, etc.

3.1. Error Propagation

You determine the height x of a building by letting a stone drop and measuring the time t with a watch.

$$x = \frac{1}{2}gt^2 \longrightarrow x = \langle x \rangle \pm \sigma_x$$

From your watch accuracy, σ_t , you want to know the error in x, σ_x . Then in this example:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
 with $\sigma = \sqrt{N}$ for counting experiments

(5)
$$\frac{\sigma_x}{x} \simeq \frac{\sigma_t}{x} \left(\frac{\partial x}{\partial t} \right) = \frac{\sigma_t}{x} gt = 2 \frac{\sigma_t}{t}.$$

In general, if we evaluate x(w) from a measured w with σ_w , then

^{*}Electronic address: ; URL: http://web.mit.edu/8.13

$$\sigma_x^2 \simeq \sigma_w^2 \left(\frac{\partial x}{\partial w}\right)^2$$
 (8)

and for more parameters $w_1, w_2, \dots w_m$:

$$\sigma_x = \sqrt{\sum_{i=1}^m \left(\sigma_w^i \frac{\partial x}{\partial w_i}\right)^2}.$$
 (9)

Example, if $x = w_1/w_2$, (or $w_1 \cdot w_2$)

$$\frac{\sigma_x}{x} = \sqrt{\frac{\sigma_{w1}^2}{w_1^2} + \frac{\sigma_{w2}^2}{w_2^2}},$$

i.e. fractional errors add in quadrature.

Having made N measurements we quote our best (maximum likelihood) values as:

Distribution Mean

$$\langle x \rangle = \frac{1}{N} \sum x_i \approx \mu \qquad = \frac{\sum (x_i/\sigma_i)^2}{\sum (1/\sigma_i)^2}$$
 (10)

Distribution Uncertainty

$$\sigma_x = \frac{\sigma_{\text{one measurement}}}{\sqrt{N}} = \sqrt{\frac{N}{N-1}} \sqrt{\frac{\sum (x_i - \langle x \rangle)^2 / \sigma_i^2}{\sum (1/\sigma_i)}}$$
(11)

where the first value is for N measurements of equal error and the second is for the case of combining measurements of different σ_i by error weighting.

4. PROBLEMS

- 1. Bevington & Robinson (2003) exercise 2.16
- 2. Observed over a long tme, cars pass a road at a rate of 5 in 10 minutes. (A) What is the probability that no car passes between 10 and 10:05 am? (B) What is the probability that no car passes between 10 and 10:05 am on three consecutive days? (C) What is the probability that ≥ 4 cars pass between 10 and 10:05 am? (D) How would you prove that the "passings" are independent? Describe a condition where they are not independent.
- 3. Bevington & Robinson (2003) exercise 3.2