MIT OpenCourseWare
http://ocw.mit.edu

### 8.13-14 Experimental Physics I \& II "Junior Lab"

Fall 2007 - Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# 8.13 Statistics Assignment 

Teaching Staff*<br>MIT Department of Physics<br>(Dated: September 10, 2007)

Types of errors, parent and sample distributions. Error propagation. Due September 17,18-2007

## 1. READING

- Bevington \& Robinson Chapters 1-4.2
- Helpful: J. R. Taylor "An Introduction to Error Analysis"


## 2. SUMMARY/OVERVIEW:

When quoting your results in Junior Lab, you are expectred to give a solid statistical error and an estimate of the systematic error. Note: statistical errors come solely from REPEATED, independent, measurements.

Errors are not mistakes but uncertainties in measurements:
a) Random Errors, $\sigma$ - jitter of measurements around the true value, $\mu$.
b) Systematic Errors, $\Delta$ - deviation from truth by faulty knowledge/equipment.

If we make $N$ measurements $x_{1}, x_{2}, \ldots x_{N}$ and quote the result

$$
\begin{equation*}
x_{\text {result }}=x_{\text {best }} \pm s_{x} \pm \Delta x \tag{1}
\end{equation*}
$$

then usually:

$$
\begin{align*}
x_{\text {best }} & =\langle x\rangle=\frac{1}{N} \sum x_{i} \quad \text { mean }  \tag{2}\\
s_{x} & =\frac{1}{N-1} \sum\left(x_{i}-\langle x\rangle\right)^{2} \quad \text { std. dev. } \tag{3}
\end{align*}
$$

$\Delta x=$ estimate of unmeasured 'systematic' effect\$(4)
If $x_{i}$ came from a parent or population distribution with probability density $p(x)$, the population mean $\mu=$ $\lim _{N \rightarrow \infty}\langle x\rangle$ and variance $\sigma_{x}^{2}=\lim _{N \rightarrow \infty} s_{x}^{2}$.

Note: $\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$.
Some common parent distributions are:
a) Gaussian:
b) Poisson:

$$
\begin{equation*}
p(x)=\frac{\mu^{x}}{x!} e^{-\mu} \quad \text { with variance } \sigma=\sqrt{\mu} \tag{6}
\end{equation*}
$$

c) Lorentian:
$p(x)=\frac{1}{\pi} \frac{\Gamma / 2}{(x-\mu)^{2}+(\Gamma / 2)^{2}} \quad$ FWHM : $|x-\mu|= \pm \Gamma / 2$

In general, these distributions govern experiments with: a) high statistics $(\mu \geq 20)$, b) low statistics $(\mu<20)$ and c) distributions of photons with line width $\Gamma=\hbar / E$.

## 3. ERROR ANALYSIS

## Counting Experiments:

Result $=(N \pm \sqrt{N})$ for distributions (5) and (6).

## Continuous Experiments:

Result $=T \pm \sigma_{T}$ (temperature $T_{i}$, voltage, etc...) $T_{i}$ are most likely Gaussian distributed, if your measurements are independent (i.e. the measurements are uncorrelated and do not depend on each other). The variance $\sigma$ you obtain from fitting a Gaussian to your distribution of values depends, for example, on the coarseness of the scale of your thermometer, etc.

### 3.1. Error Propagation

You determine the height $x$ of a building by letting a stone drop and measuring the time $t$ with a watch.

$$
x=\frac{1}{2} g t^{2} \quad \longrightarrow \quad x=\langle x\rangle \pm \sigma_{x}
$$

From your watch accuracy, $\sigma_{t}$, you want to know the error in $x, \sigma_{x}$. Then in this example:
$p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \quad$ with $\sigma=\sqrt{\mathrm{N}}$ for counting experiments

[^0]\[

$$
\begin{equation*}
\frac{\sigma_{x}}{x} \simeq \frac{\sigma_{t}}{x}\left(\frac{\partial x}{\partial t}\right)=\frac{\sigma_{t}}{x} g t=2 \frac{\sigma_{t}}{t} \tag{5}
\end{equation*}
$$

\]

In general, if we evaluate $x(w)$ from a measured $w$ with $\sigma_{w}$, then

$$
\begin{equation*}
\sigma_{x}^{2} \simeq \sigma_{w}^{2}\left(\frac{\partial x}{\partial w}\right)^{2} \tag{8}
\end{equation*}
$$

and for more parameters $w_{1}, w_{2}, \ldots w_{m}$ :

$$
\begin{equation*}
\sigma_{x}=\sqrt{\sum_{i=1}^{m}\left(\sigma_{w}^{i} \frac{\partial x}{\partial w_{i}}\right)^{2}} \tag{9}
\end{equation*}
$$

Example, if $x=w_{1} / w_{2},\left(\right.$ or $\left.w_{1} \cdot w_{2}\right)$

$$
\frac{\sigma_{x}}{x}=\sqrt{\frac{\sigma_{w 1}^{2}}{w_{1}^{2}}+\frac{\sigma_{w 2}^{2}}{w_{2}^{2}}}
$$

i.e. fractional errors add in quadrature.

Having made $N$ measurements we quote our best (maximum likelihood) values as:

## Distribution Mean

$$
\begin{equation*}
\langle x\rangle=\frac{1}{N} \sum x_{i} \approx \mu \quad=\frac{\sum\left(x_{i} / \sigma_{i}\right)^{2}}{\sum\left(1 / \sigma_{i}\right)^{2}} \tag{10}
\end{equation*}
$$

## Distribution Uncertainty

$\sigma_{x}=\frac{\sigma_{\text {one measurement }}}{\sqrt{N}}=\sqrt{\frac{N}{N-1}} \sqrt{\frac{\sum\left(x_{i}-\langle x\rangle\right)^{2} / \sigma_{i}^{2}}{\sum\left(1 / \sigma_{i}\right)}}$
where the first value is for $N$ measurements of equal error and the second is for the case of combining measurements of different $\sigma_{i}$ by error weighting.

## 4. PROBLEMS

1. Bevington \& Robinson (2003) exercise 2.16
2. Observed over a long tme, cars pass a road at a rate of 5 in 10 minutes. (A) What is the probability that no car passes between 10 and 10:05 am? (B) What is the probability that no car passes between 10 and 10:05 am on three consecutive days? (C) What is the probability that $\geq 4$ cars pass between 10 and 10:05 am? (D) How would you prove that the "passings" are independent? Describe a condition where they are not independent.
3. Bevington \& Robinson (2003) exercise 3.2

[^0]:    *Electronic address: ; URL: http://web.mit.edu/8.13

