MIT OpenCourseWare
http://ocw.mit.edu

8.13-14 Experimental Physics I \& II "Junior Lab"

Fall 2007 - Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

PRIMER ON ERRORS 8.13 U.Becker

B Random \& Systematic Errors
Distribution of random errors
Binomial, Poisson, Gaussian
比 Poisson <-> Gaussian relation
Propagation of Errors
8 Fits -
Read Bevington ch. 1-4

- No measurement has infinite accuracy or precision"
- K.F.Gauss:
- "Experimental physics numbers must have errors and dimension."
: $G=(6.67310 \pm 0.00010)\left[\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right]$
- Errors = deviations from Truth (unknown, but approached)

Large error: Result is insignificant. Small error: Good measurement, it will test theories.

Blunders : no,no, - repeat on Fridays correctly.

Random Errors

Systematic Errors
or "statistical" - independent, repeated measurements give (slightly) different results "in the system", DVM 2\% low,... correct if you can, otherwise quote separate

Systematic error: inherent to the system or environment

Example:
Measure g with a pendulum: $\quad T=2 \pi \sqrt{\frac{l}{g}}$
neglect m of thread)
equipment (accuracy of scale, watch)
environment (wind, big mass in basement)
 thermal expansion t
1.correct by $I=l_{0}(1+\alpha t)$ if t known or
2.give sys.error Δ_{t} from est. range of t.
large M below earth
\Rightarrow limits ACCURACY (=closeness to truth)

Random (statistic) error

example:
measure period T of the pendulum several times:

Statistics N:
\Rightarrow limits PRECISION , but $\lim (N->\infty)=$ truth

Evaluate:

$$
\mathrm{g}=\left(\mathrm{l} \pm \sigma_{l}\right)\left\{2 \pi /\left(\mathrm{T} \pm \sigma_{\mathrm{T}}\right)\right\}^{2}=9,809 \pm ? ?
$$

To find the statistical and systematic errors of g , we need error propagation (later) and do it separately- for statistical and for systematic errors. Let's say we found:

$$
g=\underset{\text { 个nonsense digits }}{\left(9.80913 \pm .007_{\text {stat }} \pm .011_{\text {sys }}\right) \mathrm{m} / \mathrm{s}^{2}}
$$

Compare to the "accepted value":
(Physics.nist.gov/physRefData/contents.html) gives'global value'

$$
g=9.80665 \pm(0) \quad \text { by definition !! }
$$

\Rightarrow conclusion: OK within (our) errors

Distribution of Measurements with Random Error: Limit N->> Parent Distribution.

Measure resistors N times: manufacture $100 \Omega \pm 5 \%$
DVM accurate to $\pm 1 \%$ contact resistance $\pm 0.2 \Omega$

INDEPENDENT !!!

	N measured samples	Parent distribution
Graph	histogram	smooth curve
Average -> Mean	$\langle x\rangle=\frac{1}{N} \sum_{i=1}^{N} x_{i}$	$\mu=\lim _{N \rightarrow \infty}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right)$
Variance -> standard deviation	$s_{x}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}$	$\sigma_{x}^{2}=\lim _{N \rightarrow \infty}\left(\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right)$
Result \pm error	$\langle x\rangle \pm s_{x} / \sqrt{N}$	$\mu \pm 0$

Famous Probability Distibutions:

Binomial: Yes(Head): p No(Tail): q = 1-p
x heads in n trials: $\mathrm{p}^{\mathrm{x}} \mathrm{q}^{\mathrm{n-x}}$ for ppppppp qqqqq seq., There are $\binom{x}{n}=\frac{n!}{x!(n-x)!} \quad$ permutations, so that:

$$
\begin{aligned}
& P(x: n, p)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& \text { mean }=\mathrm{n} \bullet \mathrm{p}=: \mu \\
& \text { variance }=\sqrt{\mathrm{n} \cdot \mathrm{p}(1-\mathrm{p})}
\end{aligned}
$$

Seldom used, but grandfather of the following:

Poisson: follows for low $p \ll 1$, yet $n \cdot p=\mu$ Observe r events in time interval t

$$
\begin{aligned}
& P(r \cdot \mu)=\frac{\mu^{r}}{r!} e^{-\mu}=\left(\frac{(\lambda \cdot t)^{r}}{r!} e^{-\lambda t}\right) \\
& \begin{array}{ll}
\text { mean }=\lambda \cdot \mathrm{t} & =\mu \boldsymbol{1} \\
\text { st. deviation } & =\sqrt{\mu}
\end{array} \\
& \text { Application for low rates }
\end{aligned}
$$

Intervals between two events: $P(0, \lambda \bullet t)=e^{-\lambda \bullet t}->t=0$ most likely!!!!

Gaussian.. is the case for $n \cdot p \gg 1$ (applicable to 1%, if $n p>17$)

$$
\begin{aligned}
& P(x ; \mu, \sigma)=\frac{1}{2 \pi \sigma} e^{\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \text { mean } \quad=\mu
\end{aligned}
$$

St. deviation $\sigma=\sqrt{\mu}$ for counting experiments

Central Limit Theorem:
"Folding many different distributions -> always a Gaussian".
This is the case in most of your measurements.

Distribution of 2200Ω resistors

$$
\begin{aligned}
\mu & =2.17 \pm .01 \mathrm{k} \Omega \\
\sigma & =0.023 \mathrm{k} \Omega
\end{aligned}
$$

Distribution of $100 \pm 5 \Omega$ resistors
$\mu=104 \pm ? ? ? ?$
No good fit !!!
Still $V_{s}=7.5 \Omega$
Someone selected out!!

Given a histogram of measurements:
How do you know it is
a) A Poisson distribution?
b) Since you do not know the true mean, check the
c) Sample Variance ${ }^{1 / 2}$

$$
\sqrt{S}=\sqrt{\frac{1}{N-1} \sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}
$$

d) Against the standard deviation $\sigma=\sqrt{\mu} \approx \sqrt{\langle x\rangle}$

What doe this mean?

Source $\mathrm{n}=10^{10}$ atoms $\mathrm{Fe}^{55}-\Rightarrow \mathrm{Mn}^{55} \gamma$
$\tau_{1 / 2}=2.7 \mathrm{y}=8.510^{7} \mathrm{sec}$
Expected average
Decays/ Time $=\mu=n \bullet p$

Poisson $p \ll 1$	Gaussian $n \bullet p \gg 1$
$p=\ln 2 / \tau_{1 / 2}=0.810^{-8} / \mathrm{s}$	$\mathrm{n} \cdot \mathrm{p}=80 / \mathrm{sec}$
0.8 counts/.01s	80 counts/s
$\begin{aligned} & \text { \#decays } \\ & \text { per } .01 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { \#decays } \\ & \text { per s } \end{aligned}$
$\square P \mathrm{l}$	Gauss
	$\frac{1}{20-40-8080}$

$$
\text { For } \mu>17 \text { Poisson } \approx \text { Gauss to } 1 \% \text {, Both have variance }=V_{\mu}
$$

Triva question:"If I make 100 of the left hand measurements and lump together in one distribution, will I see the right hand shape?" YES!!

PROPAGA TION OF ERRORS Bevington ch. 3

You measure $u \pm \sigma_{u}$ and $v \pm \sigma_{v}$, but evaluate $x=u+v$ or $x=u / v$ and want the error of x.

Taylor expans ion:

$$
\begin{aligned}
& x_{i}-\langle x\rangle=\left(u_{i}-\langle u\rangle\right) \frac{\partial x}{\partial u}+\left(v_{i}-\langle v\rangle\right) \frac{\partial}{\partial}+\ldots \ldots . . \\
& \sigma_{x}^{2}=\lim _{N \rightarrow \infty} \frac{1}{N}\left(\left(u_{i}-\langle u\rangle\right) \frac{\partial x}{\partial u}+\left(v_{i}-\langle v\rangle\right) \frac{\partial x}{\partial}\right)^{2}
\end{aligned}
$$

then

$$
=\sigma^{2}(\underline{\underline{\alpha}})^{2}+\sigma^{2}(\underline{\underline{\alpha}})^{2}+2 \sigma^{2}\left(\underline{\alpha}(\underline{\underline{\alpha}}) \begin{array}{l}
=0 \text { if uncorrelated,otherwise } \\
\sigma_{\text {uv }} \text { covariance matrix -difficult }
\end{array}\right.
$$

Sum\&Diff: $\mathrm{x}=\mathrm{au}+\mathrm{bv} \quad->\sigma_{x}^{2}=a^{2} \sigma_{u}^{2}+b^{2} \sigma_{v}^{2} \pm 2 a b \sigma_{u v}^{2}$
Prod.\&Div: $\mathrm{x}=\mathrm{a} . \mathrm{uv}$ or a.u/v $->\frac{\sigma_{x}^{2}}{x^{2}}=\frac{\sigma_{u}^{2}}{u^{2}}+\frac{\sigma_{v}^{2}}{v^{2}}+\frac{2 \sigma_{u v}^{2}}{u v}$
Powers: $\quad x=a T^{4}$

$$
->\frac{\sigma_{x}}{x}= \pm 4 \frac{\sigma_{T}}{T}
$$

Famous Confusion

Make a measure ment, get theme an

What is the err or? NOT $\sigma_{\mathbf{x}}$!!!
$\sigma_{x}^{2}=s_{x}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}$

Beste stimate $=$ mean $:\langle x\rangle=\frac{1}{N} \sum_{i=1}^{N} x_{i} \pm \frac{\sigma_{x}}{\sqrt{\mathrm{~N}}}$
Bevingt on eq 4.12 err or of the mean make man y measur ement s!

If measure ments x_{i} have differ enterr ors σ_{I}
Combine: $\quad\langle x\rangle=\frac{\sum \frac{x_{i}}{\sigma_{i}^{2}}}{\sum \frac{1}{\sigma_{i}^{2}}} \quad$ with $\sigma=\sqrt{\frac{1}{\sum \frac{1}{\sigma_{i}^{2}}}}$
They ar e called: weighte d avera ge \pm combined st. dev.

The Art of fitting or he χ^{2} - distribution:
Bevington, ch. 4
Assume we know μ_{I} the true function values in the i-th bin. We measure n times x_{i} with random error σ_{i} in each bin and evaluate

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}
$$

Clearly this quantity has a distribution itself, because the next random sample of n measurements will have different χ^{2}. You usually have the reverse case, the true function is not known, but approximated by
a "best fit", based on n measurements.
You want to know: "Is the fit acceptable?" The χ^{2} distribution gives you the probability that your measurement has this particular χ^{2}. Define $\chi^{2}=u$ and $v=n$ - \#parameters = "degrees of freedom". (with 2 data points and 2 parameters the curve must go through them, there is no "freedom to fit".)
The distribution is

$$
P(u)=\frac{(u / 2)^{v / 2-1} e^{u / 2}}{2 \Gamma(v / 2)} \text { where } \Gamma=\text { Gamma funct. }
$$

