MIT OpenCourseWare
http://ocw.mit.edu

8.13-14 Experimental Physics I \& II "Junior Lab"

Fall 2007 - Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Introduction to Junior Lab

Getting started

- Find a good partner
- 18 units: 6 in lab, 12 outside lab
- this is not an overestimate
- make sure you + your partner can coordinate schedule and work together efficiently

Experiments

- Major advances in science (e.g. Nobel prizes)
- Refine your skills in the art + science of experimental physics
- How to obtain good data
- How to document your work
- How to estimate errors
- How to present your results
- As close to real life as possible

Experiments

- 26 sessions total
- attendance is required
- You will do
- 4 out of 8 exp's (5 sessions each)
- prep questions
- oral presentation + paper for each
- $2 \times 30 \mathrm{~min}$ per partnership for oral
- Last 4 weeks: Possible "challenge" work on selected experiment

Ethics in Science

- Fabrication/Falsification of data
- document everything as you go (Notebook)
- complete record of everything you have done, including mistakes
- Plagiarism
- never use other work without acknowledgement
- mark quotes as quotes
- do not import text (from web resources)
- Comparison to known values is ok, but not substitution/modification of your data, unless clearly marked
- No tolerance in JLab

Safety

- Electrical safety
- be careful
- never work alone
- Laser safety
- Wear goggles
- Use common sense
- Cryo Safety
- Radiation Safety

Grading Scheme

- 10% attendance/lab performance
- change 'lead' from exp to exp
- 8\% Notebooks
- graded by Scott Sewell ($2 x$ in semester)
- 10% prep problems
- come prepared, you will need the time
- 40% orals
- 20^{\prime} are short
- split topic between partners (but not along theory/experiment)
- 32\% papers
- < 4 pages, due morning after oral
- both partners have to write their own paper

Introduction to Data Analysis

c.f. Bevington
Chapters 1-3

Data Reduction

- Translate measured data into one or more physical variables of interest
- Obtain
- best estimate for physical variable
- estimate for precision and accuracy of measurement (systematic and statistical uncertainty)
- Example (from my experiment):

 particle momentum

Histograms

Binned representation of data in 1, 2 or 3 dimensional variable space

Statistical and Systematic Error

- Systematic error
- inherent to measurement, apparatus, methods
- estimate magnitude by comparing different approaches
- limits accuracy
- Statistical error
- Measurements jitter around truth
- Average many measurements to improve estimate (if they are independent)
- limits precision, but $\lim (N->$ inf $)=$ truth

Distribuemtions

Sample
Distribution

Feb 62008

$$
\left.\begin{array}{rl}
\text { Mean }\langle x\rangle & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\text { Variance } s_{x}^{2} & =\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}
\end{array}\right\} \begin{aligned}
& \text { for } \mathrm{N}->\inf :
\end{aligned}
$$

Binominal Distribution

$$
P(x: n, p)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

$$
\text { Mean } \quad \mu \quad=n \cdot p
$$

$$
\text { Std. Dev } \sigma \quad=\sqrt{n \cdot p(1-p)}
$$

$\mathrm{P}(\mathrm{x}: \mathrm{n}, \mathrm{p})$: Probability to get 'yes' x times out of n tries, if probability of 'yes' for single try is p

Poisson Distribution

$$
P(x, \mu)=\frac{\mu^{x}}{x!} e^{-\mu}
$$

Mean $\quad \mu \quad=\mu$

Std. Dev $\sigma=\sqrt{\mu}$

Derives from binomial distribution for $\mathrm{p} \ll 1$ with $\mathrm{n}^{*} \mathrm{p}=\mathrm{m}$ Important for counting experiments with low count rate

Gaussian Distribution

$$
P(x, \mu, \sigma)=\frac{1}{2 \pi \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

Mean

$$
\mu \quad=\mu
$$

Std. Dev $\quad \sigma \quad=\sigma=\sqrt{\mu}$

Derives from Poisson distribution for $n * p \gg 1$
Seen everywhere b/c of Central Limit Theorem

Statistical Error on Mean

$$
\langle x\rangle \pm \sigma_{x}^{2} / \sqrt{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \pm \frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2} / \sqrt{N}
$$

- Repeated measurements increase precision
- but only as sqrt(N)
- ultimate limit may come from systematic uncertainty

Error propagation

Interested in error on ' x ', but measure ' u ', with $x=f(u)$

$$
\sigma_{x}^{2}=\sigma_{u}^{2}\left(\frac{\partial x}{\partial u}\right)^{2}
$$

What if $x=f(u, v)$:

$$
\sigma_{x}^{2}=\sigma_{u}^{2}\left(\frac{\partial x}{\partial u}\right)^{2}+\sigma_{v}^{2}\left(\frac{\partial x}{\partial v}\right)^{2}
$$

Errors add in quadrature, provided error in u and v is independent

Fitting of Data

c.f. Bevington
 Chapters 4-6

Fitting

- Fitting: Find a functional form that describes data within errors
- Why fit data?
- extract physical parameters from data
- test validity of data or model
- interpolate/extrapolate data

How to fit data?

- Vary parameters of function until you find a global maximum of goodness-of-fit criterion
- Goodness-of-fit
- chi-square
- likelihood
- (Kolmogorov-Smirnov test)

Chi-square fit

Best Fit: Global minimum of Chi-square

Goodness of fit

- You EXPECT data to fluctuate by ~ error
- For Gaussian errors, only 68% of your data points should agree with model/fitted function by better than 1s
- Chi-square per Degree of Freedom (DoF) should be ~ 1
- DoF: Number of data points - number of fitted parameters
- Chi-square allows you to test if model/fitted function is compatible with data

Example

- Suppose you have 10^{4} atoms
- Probability of decay is $10^{-2} / \mathrm{sec}$
- Count \#of decays/second
- Repeat experiment many times (always starting with 10^{4} atoms)
- What distribution do you expect for the number of observed counts?

Example

Chi-square/DoF $=60 / 53$

Example

Chi-square $/$ DoF $=1200 / 55$

Feb 62008

Example

Chi-square/DoF $=4.5 / 71$

Chi-square distribution

- Even if your error estimate is correct and the model is correct
- Chi-square will fluctuate from chi2/DoF < 1 to chi2/Dof >1
- The shape of the chi2-distribution depends only on the number of degrees of freedom
- allows calculation of probability that data and model agree
- Chi-square probability
- Percentage of all measurements that you expect to have a worse chi-square than what you see

Fitting

- Linear relationship: Analytical
- In general: Numerical minimization of chi-square
- Many methods
- simple grid-search
- Non-linear Newton
- Levenberg-Marquardt
- Simulated annealing
- Criteria
- Dimension of parameter space
- Data statistics
- Challenge
- Speed vs finding true global minimum

