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1 Harmonic oscillator 

The harmonic oscillator is an ubiquitous and rich example of a quantum system. It is a solvable 

system and allows the exploration of quantum dynamics in detail as well as the study of quantum 

states with classical properties. 

The harmonic oscillator is a system where the classical description suggests clearly the 

definition of the quantum system. Classically a harmonic oscillator is described by the position 
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x(t) of a particle of mass m and its momentum p(t). The energy E of a particle with position 

x and momentum p is given by 

E = 
p2 

+ 
1 
mω2 x 2 . (1.1) 

2m 2 
Here the constant ω, with units of inverse time, is related to the period of oscillation T by 

ω = 2π/T . In the simplest application, the classical harmonic oscillator arises when a mass 

m free to move along the x axis is attached to a spring with spring constant k. The restoring 

force F = −kx acting on the mass then results in harmonic motion with angular frequency 
J

ω = k/m. 

The quantum system is easily defined. Instead of position and momentum dynamical vari

ables we have hermitian operators x̂ and p̂ with commutation relation 

[ x̂ , p̂ ] = in 1 . (1.2) 

To complete the definition of the system we need a Hamiltonian. Inspired by the classical 

energy function (1.1) above we define 

p̂2 1
Ĥ ≡ + mω2x̂2 . (1.3) 

2m 2 

The state space H is the space of square-integrable complex valued functions of x. The system 

so defined is the quantum harmonic oscillator. 

In order to solve the quantum system we attempt to ‘factorize’ the Hamiltonian. This 

means finding an operator V such that we can rewrite the Hamiltonian as Ĥ = V †V . This is 

not exactly possible, but with a small modification it becomes possible. We can find a V for 

which 

ˆ V †VH = + E0 1 , (1.4) 

where E0 is a constant with units of energy that multiplies the identity operator. This extra 

diagonal contribution does not complicate our task of finding the eigenstates of the Hamiltonian, 

nor their energies. This factorization allows us to show that any energy eigenstate must have 

energy greater than or equal to E0. Indeed it follows from the above equation that

 ψ|Ĥ|ψ) =  ψ|V †V |ψ)+ E0 ψ|ψ) =  V ψ|V ψ) + E0 , (1.5) 

Since any norm must be greater than or equal to zero, we have shown that

 ψ|Ĥ|ψ) ≥ E0 . (1.6) 

ˆFor a normalized energy eigenstate |E) of energy E: H|E) = E|E), and the above inequality 
yields, as claimed

 E|Ĥ|E) = E ≥ E0 . (1.7) 
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To factorize the Hamiltonian we first rewrite it as
 

1 ( p̂2 )
Ĥ = mω2 x̂2 + . (1.8) 

2ω22 m

Motivated by the identity a2 + b2 = (a − ib)(a + ib), holding for numbers a and b, we examine 

the product 

� �� � 
2ip̂ ip̂ p̂ i2 

�
x̂− x̂+ = x̂ + + x̂p̂− p̂x̂) ,

2ω2mω mω m mω 
(1.9) 

p̂2 n 
= x̂2 + − 1 ,

2ω2m mω 

where the extra terms arise because x̂ and p̂, as opposed to numbers, do not commute. Letting 

ip̂
V ≡ x̂+ ,

mω 
(1.10) 

ip̂
V † ≡ x̂− ,

mω 

we rewrite (1.9) as 
p̂2 n 

x̂2 + = V †V + 1 , (1.11) 
2ω2m mω 

and therefore back in the Hamiltonian (1.8) we find, 

1 (
n ) 1 1

Ĥ = mω2 V †V + 1 = mω2 V †V + nω1 . (1.12) 
2 mω 2 2 

The constant E0 defined in (1.4) is thus 1
2
nω and (1.6) implies that 

1 
ψ|Ĥ|ψ) ≥ nω . (1.13) 

2 

This shows that E ≥ 1
2
nω for any eigenstate of the oscillator. 

It is convenient to scale the operators V and V † so that they commute to give a simple, 

unit-free, constant. First we compute 

[ ip̂ ip̂ ] i i 2n[
V , V † 

] 
= x̂+ , x̂− = − [x̂ , p̂] + [p̂, x̂] = 1 . (1.14) 

mω mω mω mω mω 

This suggests the definition of operators 

 
mω 

â ≡ V , 
2n 

(1.15)  
mω † V † â ≡ . 
2n 
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Due to the scaling we have 
[ † ]ˆ a = 1 . (1.16) a , ̂

From the above definitions we read the relations between (â, â†) and (x̂ , p̂): 

mω ip̂
â = x̂+ ,

2n mω 
(1.17) 

mω ip̂
â† = x̂− . 

2n mω 

The inverse relations are many times useful as well, 

n †)x̂ = (â + â ,
2mω 

(1.18) 

p̂ = i 
mωn 

(â † − â) . 
2 

While neither â nor â† is hermitian (they are hermitian conjugates of each other), the above 

equations are consistent with the hermiticity of x̂ and p̂. We can now write the Hamiltonian in 

terms of the â and â† operators. Using (1.15) we have 

2n 
V †V †ˆ= â a , (1.19) 

mω 

and therefore back in (1.12) we get 

( 1) ( 1)ˆ ˆ †ˆĤ = nω â†â+ = nω N + , N ≡ â a . (1.20) 
2 2

In here we have dropped the identity operator, which is usually understood. We have also 

introduced the number operator N̂ . This is, by construction, a hermitian operator and it is, up 

to a scale and an additive constant, equal to the Hamiltonian. An eigenstate of Ĥ is also an 

eigenstate of N̂ and it follows from the above relation that the respective eigenvalues E and N 

are related by 
( 1)

E = nω N + . (1.21) 
2

From the inequality (1.13) we have already shown that for any state 

1 
E ≥ nω , N ≥ 0 . (1.22) 

2 

There cannot exist states with negative number. This can be confirmed directly. If |ψ) is a 

state of negative number we have 

â†â|ψ) = −α2|ψ) , α > 0 . (1.23) 
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Multiplying by the state bra ψ| and noticing that ψ|ˆ†ˆ = aψˆ |ˆa a|ψ) aψ) we get 

ˆ aψ) = −α2 ψ|ψ) . (1.24) aψ|ˆ

This is a contradiction, for if |ψ) is not the zero vector, the right-hand side is negative, which 

cannot be since the left hand side is also a norm-squared and thus positive. 

Exercise. Prove the following commutation relations 
[ ]
Ĥ , â = − a , nω ˆ

(1.25) [
ˆ † ] †H , â = + nω â . 

To derive the spectrum of the oscillator we begin by assuming that one normalizable eigen

state |E) of energy E exists: 

Ĥ|E) = E|E) , E|E) > 0 . (1.26) 

Note that the state must have positive norm-squared, as indicated above. The state |E) also 

an eigenstate of the number operator, with eigenvalue NE given by 

E 1
N̂ |E) = NE |E) , with NE = − . (1.27) 

nω 2 

We will now define two states 

|E+) = â†|E) , 
(1.28) 

|E−) = â |E) . 
Let us assume, for the time being that both of these states exist – that is, they are not zero 

nor they are inconsistent by having negative norm-squared. We can then verify they are energy 

eigenstates 
)

Ĥ|E+) = ˆa = [ ˆ a a † ˆ |E) = a †|E) = (E + nω)|E+) ,Hˆ†|E) H, ̂ †] + ˆ H (nω + E) ˆ
(1.29) )

ˆ ˆ ˆH|E−) = a |E) = [ ˆ a ] + ˆH |E) = a |E) = (E −Hˆ H, ̂ a (−nω + E) ˆ nω)|E−) , 
As we label the states with their energies, this shows that 

E+ = E + nω , NE+ = NE + 1 , 
(1.30) 

E− = E − nω , NE− 
= NE − 1 . 

We call â† the creation or raising operator because it adds energy nω to the eigenstate it acts 

on, or raises the number operator by one unit. We call â the annihilation or lowering operator 

because it subtracts energy nω to the eigenstate it acts on, or lowers the number operator by 

one unit. One more computation is needed: we must find the norm-squared of the |E±) states: 

E+|E+) = E|ââ†|E) = E|(N̂ + 1)|E) = (NE + 1) E|E) , 
(1.31) 

E−|E−) = E|â†â|E) = E|N̂ |E) = NE E|E) . 
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We can summarize this as
 

â†E|â†E) = (NE + 1) E|E) , 
(1.32) 

ˆ aE ) NE E|E) .aE | ˆ = 

These equations tell us an interesting story. Since the state |E) is assumed to exist we must 

have NE ≥ 0 (see (1.22)) . We claim that as long as we act with â† on this state we do not 

obtain inconsistent states. Indeed the first equation above shows that norm-squared of |â†E) is 
positive, as it should be. If we act again with â†, since the number of |â†E) is NE + 1 we find 

â†â†E|â†â†E) = (NE + 2) â†E|â†E) = (NE + 2)(NE + 1) E|E) , (1.33) 

which is also positive. We cannot find an inconsistent negative norm-squared however many 

times we act with the raising operator. 

The lowering operator, however, requires more care. Assume we have a state |E) with 

integer positive number NE . The number eigenvalue goes down in steps of one unit each time 

we apply an â operator to the state. As long as the number of a state is positive, the next state 

having an extra â has positive norm-squared because of the relation ˆ aE ) = NE E|E). So aE | ˆ
no complication arises until we hit a state |E ′ ) with number NE′ = 0, in which case it follows 

that 

aE ˆ ′ | ˆ ) = N ′ = 0 . (1.34) aE ′ E ′ |E ′ )E 

Having zero norm, the state |âE ′ ) must be the zero vector and we cannot continue to apply 

lowering operators. We thus avoid inconsistency. 

If the original |E) state has a positive non-integer number NE we can lower the number by 

acting with â’s until we get a state |E ′ ) with number between zero and one. The next state 

|aE ˆ ′ ) has negative number and this is an inconsistency – as we showed before these cannot 

exist. This contradiction can only mean that the original assumptions cannot be true. So one 

of the following must be true 

1. There is no state with non-integer positive number. 

2. There is a state with non-integer positive number but the repeated application of â gives 

a vanishing state before we encounter states with negative number. 

Option 2 actually cannot happen. For a state |ψ) of non-zero number â†â|ψ) ∼ |ψ) and therefore 

â cannot kill the state. We conclude that there are no states in the spectrum with non-integer 

number. 

What are the energy eigenstates annihilated by â? Assume there is such state |E): 

â |E) = 0 . (1.35) 
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Acting with â† we find â†a|E) = N̂ |E) = 0, so such state must have zero number and thus 

lowest energy: 

NE = 0 , E = nω . (1.36) 

To show that the state annihilated by â exists and is unique we solve the differential equation 

implicit in (1.35). We act with a position bra to find 

mω ip̂
x|â |E) = 0 → x| x̂+ |E) = 0 . (1.37) 

2n mω 

The prefactor is irrelevant and we have, with ψE(x) ≡ x|E), 
(

n d ) dψE mω 
x + ψE(x) = 0 → = − xψE . (1.38) 

mω dx dx n 

The solution of the first-order differential equation is unique (up to normalization) 

( mω ) (mω )1/4 
ψE(x) = N0 exp − x 2 , N0 = . (1.39) 

2n πn 

We have found a single state annihilated by â and it has number zero. The ψE(x) above is the 

normalized wavefunction for the ground state of the simple harmonic oscillator. 

In the following we denote states as |n) where n is the eigenvalue of the number operator N̂ : 

N̂ |n) = n|n) . (1.40) 

In this language the ground state is the non-degenerate state |0) (do not confuse this with the 

zero vector or a state of zero energy!). It is annihilated by â: 

1ˆ ˆSHO ground state |0) : â |0) = 0 , N |0) = 0 , H|0) = nω|0) . (1.41) 
2 

The ground state wavefunction was determined above 

(mω )1/4 ( mω )
ψ0(x) = x|0) = exp − x 2 . (1.42) 

πn 2n 

Excited states are obtained by the successive action of â† on the ground state. The first 

excited state is 

|1) ≡ â†|0) (1.43) 

This state has number equal to one. Indeed, since N̂ kills the ground state, 

N̂ˆ†|0) = N, ̂ †]|0) = ˆ .a [ ˆ a a †|0) (1.44) 

Moreover the state is properly normalized 

1|1) = 0|ââ†|0) = 0|[â , â†]|0) = 0|0) = 1 . (1.45) 
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The next excited state is 
1 |2) = √ â†â†|0) . (1.46) 

This state has number equal to two, as desired. The normalization is checked as follows: 

1 1 1 
2|2) = 0| ââ â†â†|0) = 0| â [â , â†â†] |0) = 0| â (2â †)|0) = 0| â â†|0) = 1 . (1.47) 

2 2 2 

In order to get the general state it is useful to consider (1.32) in the new notation 

â† n|â† n) = (n + 1) n|n) = n + 1 , 
(1.48) 

an ˆ | an ˆ ) = n n|n) = n . 

The first means that â†|n) is a state of norm-squared n+1 and â|n) is a state of norm-squared n. 

Since we know that â†|n) ∼ |n + 1) and â|n) ∼ |n − 1) we conclude that 

√ 
â†|n) = n + 1 |n + 1) , 

(1.49) 
√ 

â |n) = n |n − 1) . 

The signs chosen for the square roots are consistent as you can check by using the two equations 

above to verify that â†â |n) = n|n). From the top equation we have 

1 |n) = √ â†|n − 1) . (1.50) 
n 

Using that equation again for the rightmost ket, and then repeatedly, we find 

1 1 1 |n) = √ â†√ â†|n − 2) = (â †)2|n − 2)
n n − 1 

J 

n(n − 1) 

1 
= (â †)3|n − 3) = . . . (1.51) J 

n(n − 1)(n − 2) 

1 
= √ (â †)n|0) . 

n! 

It is a good exercise to verify explicitly that n|n) = 1. In summary, the energy eigenstates are 

an orthonormal basis 

1 |n) = √ (a †)n|0) , m|n) = δmn . (1.52) 
n! 

You can verify by explicit computation that m|n) = 0 for m  n, but you can be sure this is = 

true because these are eigenstates of the hermitian operator N̂ with different eigenvalues (recall 

that theorem?). 
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Their energies are given by
 

( 1) ˆH|n) = En|n) = nω n + |n) , N |n) = n|n) . (1.53) 
2

One can prove that there are no additional excited states. If there were, they would have to 

have integer number and thus be degenerate with some of the above states. It can be shown 

(homework) that any such degeneracy would imply a degeneracy of the ground state, something 

we have ruled out explicitly. Therefore we have shown that the state space has the direct sum 

decomposition into one-dimensional N̂ -invariant subspaces Un: 

ˆH = U0 ⊕ U1 ⊕ U2 ⊕ · · · , Un ≡ {α|n), α ∈ C, N |n) = n|n)} . (1.54) 

The algebra of â and â† operators allows simple computation of expectation values. For 

example, 

n 
n|x̂|n) = n|(â + â †)|n) = 0 ,

2mω 
(1.55) 

mωn 
n|p̂|n) = i n|(â † − â)|n) = 0 . 

2 

In here we used that n|â|n) ∼ n|n − 1) = 0 and n|â†|n) ∼ n|n + 1) = 0. For the quadratic 

operators, both ââ and â†â† have zero diagonal matrix elements and therefore 

n n 
n|x̂2|n) = n|(â + â †)2|n) = n|(ââ† + â †â)|n) ,

2mω 2mω 
(1.56) 

mωn mωn 
n|p̂2|n) = − n|(â † − â)2|n) = n|(â †â + ââ†)|n) . 

2 2 

But ââ† + â†â = 1 + N̂ + N̂ = 1 + 2 N̂ so therefore 

n n ( 1 ))
n|x̂2|n) = 1 + 2n = n + ,

2mω mω 2 
(1.57) 

mωn ( 1 ))
n|p̂2|n) = 1 + 2n = mnω n + . 

2 

It follows that in the state |n) we have the uncertainties 
n ( 1 )

(Δx)2 = n + 
mω 2 

(1.58) 
( 1 )

(Δp)2 = mnω n + . 
2 

As a result ( 1)
On the state |n) : Δx Δp = n n + . (1.59) 

2
Only for the ground state n = 0 product of uncertainties saturates the lower bound given by 

the Heisenberg uncertainty principle. 

2 
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2 Schrödinger dynamics 

The state space of quantum mechanics –the Hilbert space H of states – is best thought as a 
space with time-independent basis vectors. There is no role for time in the definition of the state 

space H. In the Schrödinger “picture” of the dynamics, the state that represents a quantum 

system depends on time. Time is viewed as a parameter: at different times the state of the 

system is represented by different states in the Hilbert space. We write the state vector as 

|Ψ, t) , (2.1) 

and it is a vector whose components along the basis vectors of H are time dependent. If we 

call those basis vectors |ui), we have 
 

|Ψ, t) = |ui)ci(t) , (2.2) 
i 

where the ci(t) are some functions of time. Since a state must be normalized, we can imagine 

|Ψ, t) as a unit vector whose tip, as a function of time, sweeps a trajectory in H. We will first 

discuss the postulate of unitary time evolution and then show that the Schrödinger equation 

follows from it. 

2.1 Unitary time evolution 

We declare that for any quantum system there is a unitary operator U(t, t0) such that for any 

state |Ψ, t0) of the system at time t0 the state at time t is obtained as 

|Ψ, t) = U(t, t0)|Ψ, t0) , ∀ t, t0 . (2.3) 

It must be emphasized that the operator U generates time evolution for any possible state at 

time t0 –it does not depend on the chosen state at time t0. A physical system has a single 

operator U that generates the time evolution of all possible states. The above equation is valid 

for all times t, so t can be greater than, equal to, or less than t0. As defined, the operator 

U is unique: if there is another operator U ′ that generates exactly the same evolution then 

(U − U ′ )|Ψ, t0) = 0 and since the state |Ψ, t0) is arbitrary we must have that the operator 

U − U ′ vanishes, showing that U = U ′ . 
The unitary property of U means that 

(U(t, t0))
†U(t, t0) = 1 . (2.4) 

In order to avoid extra parenthesis, we will write 

U †(t, t0) ≡ (U(t, t0))
† , (2.5) 
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Figure 1: The initial state |Ψ, t0) can be viewed as a vector in the complex vector space H. As time 
goes by the vector moves, evolving by unitary transformations, so that its norm is preserved. 

so that the unitarity property reads 

U †(t, t0)U(t, t0) = 1 . (2.6) 

Unitarity implies that the norm of the state is conserved1 

Ψ, t |Ψ, t) = Ψ, t0 |U †(t, t0)U(t, t0)|Ψ, t0) = Ψ, t0|Ψ, t0)

This is illustrated in Figure 1. 

We now make a series of comments on this postulate. 

. (2.7) 

1. For time t = t0, equation (2.3) gives no time evolution 

|Ψ, t0) = U(t0, t0)|Ψ, t0) . (2.8) 

Since this equality holds for any possible state at t = t0 the unitary evolution operator 

must be the unit operator 

U(t0, t0) = 1 , ∀t0 . (2.9) 

2. Composition. Consider the evolution from t0 to t2 as a two-step procedure, from t0 to t1 

and from t1 to t2: 

|Ψ, t2) = U(t2, t1)|Ψ, t1) = U(t2, t1)U(t1, t0)|Ψ, t0) . (2.10) 

It follows from this equation and |Ψ, t2) = U(t2, t0)|Ψ, t0) that 

U(t2, t0) = U(t2, t1)U(t1, t0) . (2.11) 

1We also recall that any operator that preserves the norm of arbitrary states is unitary. 
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3. Inverses. Consider (2.11) and set t2 = t0 and t1 = t. Then using (2.9) we get 

1 = U(t0, t)U(t, t0) . (2.12) 

Thus we have 

U(t0, t) = (U(t, t0))
−1 = (U(t, t0))

† , (2.13) 

where the first relation follows from (2.12) and the second by unitarity. Again, declining 

to use parenthesis that are not really needed, we write 

U(t0, t) = U−1(t, t0) = U †(t, t0) . (2.14) 

Simply said, inverses or hermitian conjugation of U reverse the order of the time argu

ments. 

2.2 Deriving the Schrödinger equation 

The time evolution of states has been specified in terms of a unitary operator U assumed known. 

We now ask the ‘reverse engineering’ question. What kind of differential equation do the states 

satisfy for which the solution is unitary time evolution? The answer is simple and satisfying: a 

Schrödinger equation. 

To obtain this result, we take the time derivative of (2.3) to find 

∂ ∂U(t, t0)|Ψ, t) = |Ψ, t0) . (2.15) 
∂t ∂t 

We want the right hand side to involve the ket |Ψ, t) so we write 

∂ ∂U(t, t0)|Ψ, t) = U(t0, t)|Ψ, t) . (2.16) 
∂t ∂t 

Finally, it is convenient to have the same kind of U operator appearing, so we trade the order 
of times in the second U for a dagger: 

∂ ∂U(t, t0)|Ψ, t) = U †(t, t0)|Ψ, t) . (2.17) 
∂t ∂t 

This now looks like a differential equation for the state |Ψ, t). Let us introduce a name for the 

operator acting on the state in the right-hand side: 

∂ |Ψ, t) = Λ(t, t0)|Ψ, t) , (2.18) 
∂t

where 
∂U(t, t0)

Λ(t, t0) ≡ U †(t, t0) . (2.19) 
∂t 
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The operator Λ has units of inverse time. Note also that 

∂U †(t, t0)
Λ†(t, t0) = U(t, t0) , (2.20) 

∂t 

since the adjoint operation changes the order of operators and does not interfere with the time 

derivative. 

We now want to prove two important facts about Λ: 

1. Λ(t, t0) is antihermitian. To prove this begin with the equation 

U(t, t0)U †(t, t0) = 1 , (2.21) 

and take a derivative with respect to time to find,
 

∂U(t, t0) ∂U †(t, t0)
U †(t, t0) + U(t, t0) = 0 . (2.22) 
∂t ∂t 

Glancing at (2.19) and (2.20) we see that we got 

Λ(t, t0) + Λ†(t, t0) = 0 , (2.23) 

proving that Λ(t, t0) is indeed anti-hermitian. 

2. Λ(t, t0) is actually independent of t0. This is important because in the differential equation 

(2.17) t0 appears nowhere except in Λ. To prove this independence we will show that 

Λ(t, t0) is actually equal to Λ(t, t1) for any other time t1 different from t0. So its value 

cannot depend on t0. Or said differently, imagine t1 = t0 + ǫ, then Λ(t, t0) = Λ(t, t0 + ǫ) 
∂Λ(t,t0 )and as a result 

∂t0 
= 0. To prove the claim we begin with (2.19) and insert the unit 

operator in between the two factors 

∂U(t, t0)
Λ(t, t0) = U †(t, t0)

∂t 

∂U(t, t0)
( )

= U(t0, t1)U †(t0, t1) U †(t, t0)
∂t 

∂ ( )

= U(t, t0)U(t0, t1) U †(t0, t1)U †(t, t0) (2.24) 
∂t

∂U(t, t1) ∂U(t, t1) 
= U(t1, t0)U(t0, t) = U(t1, t)

∂t ∂t 

∂U(t, t1) 
= U †(t, t1) = Λ(t, t1) ,

∂t 

as we wanted to prove.
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It follows that we can write Λ(t) ≡ Λ(t, t0), and thus equation (2.18) becomes 

∂ |Ψ, t) = Λ(t)|Ψ, t) . (2.25) 
∂t

We can define an operator H(t) by multiplication of Λ by in: 

∂U(t, t0)
H(t) ≡ inΛ(t) = in U †(t, t0) . (2.26) 

∂t 

Since Λ is antihermitian and has units of inverse time, H(t) is a hermitian operator with units 

of energy. Multiplying (2.25) by in we find the Schrödinger equation: 

∂ 
Schrödinger equation: in |Ψ, t) = H(t) |Ψ, t) . (2.27) 

∂t

This is our main result. Unitary time evolution implies this equation. In this derivation 

the Hamiltonian is obtained from the knowledge of U , as shown in (2.26). In most familiar 

situations, we know the Hamiltonian and wish to calculate the time evolution operator U . 

There are basically two reasons why the quantity H(t) appearing in (2.27) is identified with 

the Hamiltonian. First, in quantum mechanics the momentum operator is given by n/i times 

the derivative with respect to a spatial coordinate. In special relativity energy corresponds to 

the time component of the momentum four-vector and thus it is reasonable to view it as an 

operator proportional to a time derivative. Second, we have used (2.27) to derive an equation 

for the time evolution of expectation values of observables. For an observable Q this took the 

form 
d Q) 1 

= [Q, H ]) (2.28) 
dt in 

This equation is a natural generalization of the classical mechanics Hamiltonian equations and 

H(t) plays a role analogous to that of the classical Hamiltonian. Indeed, in classical mechanics 

one has Poisson brackets {· , ·}pb defined for functions of x and p by 

∂A ∂B ∂A ∂B {A, B}pb = − (2.29) 
∂x ∂p ∂p ∂x 

It then turns out that for any observable function Q(x, p), its time derivative is given by taking 

the Poisson bracket of Q with the Hamiltonian: 

dQ 
= {Q, H}pb (2.30) 

dt 

The similarity to (2.28) is quite striking. In fact, one can view commutators as essentially n 

times Poisson brackets 

[A, B] ⇐⇒ in {A, B}pb (2.31) 
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Indeed [x, p] = in while {x, p}pb = 1. While these reasons justify our calling of H in the 

Schrödinger equation the Hamiltonian, ultimately we can say that any Hermitian operator 

with units of energy has the right to be called a Hamiltonian, regardless of any connection to 

a classical theory. 

The Schrödinger wavefunction Ψ(x, t) is defined by 

Ψ(x, t) ≡ x|Ψ, t) . (2.32) 

If we hit (2.27) with the position state x| from the left we get 

∂Ψ(x, t)
in = x|H(t)|Ψ, t) . (2.33) 

∂t 

If, moreover, 
p̂2 

H(t) = + V (x̂) , (2.34) 
2m 

then the equation becomes 

∂Ψ(x, t) (
n
2 ∂2 )

in = − + V (x) Ψ(x, t) . (2.35) 
∂t 2m ∂x2 

This is the familiar form of the Schrödinger equation for one-dimensional potentials. 

2.3 Calculation of the unitary time evolution operator 

The typical situation is one where the Hamiltonian H(t) is known and we wish to calculate 

the unitary operator U that implements time evolution. From equation (2.26), multiplying by 

U(t, t0) from the right gives 
∂U(t, t0)

in = H(t)U(t, t0) . (2.36) 
∂t 

This is viewed as a differential equation for the operator U . Note also that letting both sides of 

this equation act on |Ψ, t0) gives us back the Schrödinger equation. 

Since there is no possible confusion with the time derivatives, we do not need to write them 

as partial derivatives. Then the above equation takes the form 

dU i 
dt 

= − 
n 
H(t)U(t) . (2.37) 

If we view operators as matrices, this is a differential equation for the matrix U . Solving this 

equation is in general quite difficult. We will consider three cases of increasing complexity. 

Case 1. H is time independent. In this case, equation (2.37) is structurally of the form 

dU i 
dt 

= K U(t) , K = − 
n 
H , (2.38) 
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where U is a time dependent matrix, and K is a time-independent matrix. If the matrices were 

one-by-one, this reduces to the plain differential equation 

du 
= ku(t) → u(t) = e kt u(0) . (2.39) 

dt 

For the matrix case (2.38) we claim that 

U(t) = e tK U(0) . (2.40) 

Here we have the exponential of a matrix multiplied from the right by the matrix U at time 

equal zero. At t = 0 the ansatz gives the proper result, by construction. The exponential of a 

matrix is defined by the Taylor series 

∞
1 1 1 

tnKn e tK = 1 + tK + (tK)2 + (tK)3 + · · · = (2.41) 
2! 3! n! 

n=0 

Therefore it follows that the derivative takes the familiar simple form 

tK KetK d
e = = e tKK . (2.42) 

dt 

With this result we readily verify that (2.40) does solve (2.38): 

dU 
= 

d 
(e tKU(0)) = KetKU(0) = KU(t) . (2.43) 

dt dt
 

Using the explicit form of the matrix K the solution is therefore
 

i−
* Ht U0 ,U(t, t0) = e (2.44) 

iHt0/nwhere U0 is a constant matrix. Recalling that U(t0, t0) = 1, we have U0 = e and therefore 

the full solution is 

[ i ]

U(t, t0) = exp − H(t − t0) , Time-independent H . (2.45) 
n 

Exercise. Verify that the ansatz U(t) = U(0)etK , consistent for t = 0, would have not provided 

a solution of (2.38). 

Case 2. [H(t1) , H(t2) ] = 0 for all t1, t2. Here the Hamiltonian is time dependent but, despite 

this, the Hamiltonian at different times commute. One example is provided by the Hamiltonian 

for a spin in a magnetic field of time-dependent magnitude but constant direction. 

We claim that the time evolution operator is now given by 

 t[ ]

U(t, t0) = exp − i dt ′ H(t ′ ) . (2.46) 
n t0 
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2 

If the Hamiltonian is time independent, the above solution reduces correctly to (2.45). To prove 

that (2.46) solves the differential equation (2.37) we streamline notation by writing 

i t i 
R(t) ≡ − dt ′ H(t ′ ) → R ′ = − H(t) , (2.47) 

n nt0 

where primes denote time derivatives. We claim that R ′ (t) and R(t) commute. Indeed 

[ ] [ i i t ] ( i )2 t [ ]
R ′ (t) , R(t) = − H(t) , − dt ′ H(t ′ ) = − dt ′ H(t) , H(t ′ ) = 0 . (2.48) 

n n nt0 t0 

The claimed solution is 

1 1 U = exp R(t) = 1 +R(t) + R(t)R(t) + R(t)R(t)R(t) + . . . (2.49) 
3! 

We have to take the time derivative of U and this time we do it slowly(!): 

d d 1 1 U = exp R = R ′ + (R ′ R + RR ′ ) + (R ′ RR + RR ′ R + RRR ′ ) + . . . , 
dt dt 2 3! (2.50) 

= R ′ + R ′ R +
1 
R ′ RR + . . . = R ′ exp(R)

2! 

The lesson here is that the derivative of exp R is simple if R ′ commutes with R. We have thus 

obtained 
d i U = − H(t)U , (2.51) 
dt n 

which is exactly what we wanted to show. 

Case 3. [H(t1) , H(t2) ] = 0. This is the most general situation and there is only a series solution. 

We write it here even though it will not be needed in our work. The solution for U is given by 
the so-called ‘time-ordered’ exponential, denoted by the symbol T in front of an exponential 

[ i t ] ( i ) t
 

U(t, t0) = T exp − dt ′ H(t ′ ) ≡ 1 + − dt1H(t1)
 
n nt0 t0 

( i )2 t t1 

+ − dt1H(t1) dt2H(t2) 
n t0 t0 (2.52) 

( )3 t t1 t2i 
+ − dt1H(t1) dt2H(t2) dt3H(t3) 

n t0 t0 t0 

+ . . . . 

The term time-ordered refers to the fact that in the n-th term of the series we have a prod

uct H(t1)H(t2)H(t3) . . .H(tn) of non-commuting operators with integration ranges that force 

ordered times t1 ≥ t2 ≥ t3 · · · ≥ tn. 
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3 Heisenberg dynamics 

The idea here is to confine the dynamical evolution to the operators. We will ‘fold’ the time 

dependence of the states into the operators. Since the objects we usually calculate are time-

dependent expectation values of operators, this approach turns to be quite effective. 

We will define time-dependent Heisenberg operators starting from Schrödinger operators. 

In fact, to any Schrödinger operator we can associate its corresponding Heisenberg operator. 

Schrödinger operators come in two types, time independent ones (like x̂, p̂) and time dependent 

ones (like Hamiltonians with time-dependent potentials). For each of those types of operators 

we will associate Heisenberg operators. 

3.1 Heisenberg operators 

Let us consider a Schrödinger operator ÂS, with the subscript S for Schrödinger. This operator 

may or may not have time dependence. We now examine a matrix element of ÂS in between 

time dependent states |α, t) and |β, t) and use the time-evolution operator to convert the states 

to time zero: 

α, t|ÂS|β, t) = α, 0| U †(t, 0) ÂS U(t, 0) |β, 0) . (3.1) 

We simply define the Heisenberg operator ÂH(t) associated with ÂS as the object in between 

the time equal zero states: 

ÂH(t) ≡ U †(t, 0) ÂS U(t, 0) . (3.2) 

Let us consider a number of important consequences of this definition. 

1. At t = 0 the Heisenberg operator becomes equal to the Schrödinger operator:
 

ˆ ˆ
AH(0) = AS . (3.3) 

The Heisenberg operator associated with the unit operator is the unit operator: 

1H = U †(t, 0) 1U(t, 0) = 1 . (3.4) 

2. The Heisenberg operator associated with the product of Schrödinger operators is equal 

to the product of the corresponding Heisenberg operators: 

ĈS = ÂSB̂S → ĈH(t) = ÂH(t)B̂H(t) . (3.5) 

Indeed,
 

ˆ ˆ
CH(t) = U †(t, 0) ĈS U(t, 0) = U †(t, 0) ÂSBS U(t, 0) 
(3.6) 

ˆ ˆ= U †(t, 0) ÂS U(t, 0)U †(t, 0) B̂S U(t, 0) = AH(t)B̂H(t) . 
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3. It also follows from (3.5) that if we have a commutator of Schrödinger operators the 

corresponding Heisenberg operators satisfy the same commutation relations 

[ÂS, B̂S ] = CS → [ÂH(t), B̂H(t) ] = ĈH(t) . (3.7) 

Since 1H = 1, eqn. (3.7) implies that, for example, 

[x̂ , p̂ ] = in 1 → [x̂H(t) , p̂H(t) ] = in 1 . (3.8) 

4. Schrödinger and Heisenberg Hamiltonians. Assume we have a Schrödinger Hamiltonian 

that depends on some Schrödinger momenta and position operators p̂ and x̂, as in 

HS(p̂, x̂ ; t) . (3.9) 

Since the x̂ and p̂ in HS appear in products, property 2 implies that the associated Heisen

berg Hamiltonian HH takes the same form, with x̂ and p̂ replaced by their Heisenberg 

counterparts 

HH(t) = HS(p̂H(t) , x̂H(t) ; t) . (3.10) 

5. Equality of Hamiltonians. Under some circumstances the Heisenberg Hamiltonian is in 

fact equal to the Schrödinger Hamiltonian. Recall the definition 

HH(t) = U †(t, 0)HS(t)U(t, 0) . (3.11) 

Assume now that [HS(t), HS(t ′ )] = 0. Then (2.46) gives the time evolution operator 

[ i t ]

U(t, 0) = exp − dt ′ HS(t 
′ ) . (3.12) 

n 0 

Since the HS at different times commute, HS(t) commutes both with U(t, 0) and U †(t, 0). 

Therefore the HS(t) can be moved, say to the right, in (3.11) giving us 

HH(t) = HS(t) , when [HS(t), HS(t 
′ )] = 0 . (3.13) 

The meaning of this relation becomes clearer when we use (3.10) and (3.9) to write 

HS(p̂H(t) , x̂H(t) ; t) = HS(p̂ , x̂ ; t) . (3.14) 

Operationally, this means that if we take x̂H(t) and p̂H(t) and plug them into the Hamil

tonian (left-hand side), the result is as if we had simply plugged x̂ and p̂. We will confirm 

this for the case of the simple harmonic oscillator. 

6. Equality of operators. If a Schrödinger operator AS commutes with the Hamiltonian 

HS(t) for all times then AS commutes with U(t, 0) since this operator (even in the most 

complicated of cases) is built using HS(t). It follows that AH(t) = AS; the Heisenberg 

operator is equal to the Schrödinger operator. 
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7. Expectation values. Consider (3.1) and let |α, t) = |β, t) = |Ψ, t). The matrix element 

now becomes an expectation value and we have: 

ˆΨ, t|ÂS|Ψ, t) = Ψ, 0|AH(t) |Ψ, 0) . (3.15) 

With a little abuse of notation, we simply write this equation as

 
ˆ
  

ˆ
 

AS = AH(t) . (3.16) 

You should realize when writing such an equation that on the left hand side you compute 

the expectation value using the time-dependent state, while on the right-hand side you 

compute the expectation value using the state at time equal zero. If you prefer you can 

write out the equation as in (3.15) in case you think there is a possible confusion. 

3.2 Heisenberg equation of motion 

We can calculate the Heisenberg operator associated with a Schrödinger one using the defini

tion (3.2). Alternatively, Heisenberg operators satisfy a differential equation: the Heisenberg 

equation of motion. This equation looks very much like the equations of motion of classical 

dynamical variables. So much so, that people trying to invent quantum theories sometimes 

begin with the equations of motion of some classical system and they postulate the existence 

of Heisenberg operators that satisfy similar equations. In that case they must also find a 

Heisenberg Hamiltonian and show that the equations of motion indeed arise in the quantum 

theory. 

To determine the equation of motion of Heisenberg operators we will simply take time 

derivatives of the definition (3.2). For this purpose we recall (2.36) which we copy here using 

the subscript S for the Hamiltonian: 

∂U(t, t0)
in = HS(t)U(t, t0) . (3.17) 

∂t 
Taking the adjoint of this equation we find 

∂U †(t, t0)
in = −U †(t, t0)HS(t) . (3.18) 

∂t 
We can now calculate. Using (3.2) we find 

in 
d 
ÂH(t) = 

(

in 
∂U † 

(t, 0)
)

ÂS(t)U(t, 0) 
dt ∂t 

+ U †(t, 0) ÂS(t)
(

in 
∂U 

(t, 0)
) 

(3.19) 
∂t 

+ U †(t, 0) in 
∂ ÂS(t) U(t, 0) 
∂t 
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Using (3.17) and (3.18) we find 

in 
d
ÂH(t) = − U †(t, 0)HS(t) ÂS(t)U(t, 0) 

dt 

+ U †(t, 0) ÂS(t)HS(t)U(t, 0) (3.20) 

∂ÂS(t)
+ U †(t, 0) in U(t, 0) 

∂t 

We now use (3.5) and recognize that in the last line we have the Heisenberg operator associated 

with the time derivative of ÂS: 

d (∂ÂS(t)
)

in ÂH(t) = −HH(t) ÂH(t) + ÂH(t)HH(t) + in (3.21)
dt ∂t H 

We now recognize a commutator on the right-hand side, so that our final result is 

dÂH(t) [ ] (∂ÂS(t)
)

ˆin = AH(t) , HH(t) + in . (3.22) 
dt ∂t H 

A few comments are in order. 

1. Schrödinger operators without time dependence. If the operator ÂS has no explicit time 

dependence then the last term in (3.22) vanishes and we have the simpler 

[ ]
in 

dÂH(t)
= ÂH(t) , HH(t) . (3.23) 

dt 

2. Time dependence of expectation values. Let AS be a Schrödinger operator without time 

dependence. Let us now take the time derivative of the expectation value relation in 

(3.15): 

d d ˆ dÂH(t)
in Ψ, t|ÂS|Ψ, t) = in Ψ, 0|AH(t) |Ψ, 0) = Ψ, 0| in |Ψ, 0)
dt dt dt (3.24) 

ˆ= Ψ, 0|
[
AH(t) , HH(t)

]
|Ψ, 0) 

We write this as 

d ˆ ˆin AH(t)) = 
[
AH(t) , HH(t)

]
. (3.25) 

dt 

Notice that this equation takes exactly the same form in the Schrödinger picture (recall 

the comments below (3.16): 

d ˆ ˆin AS ) = 
[
AS , HS

]
. (3.26) 

dt 
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3. A time-independent operator ÂS is said to be conserved if it commutes with the Hamil

tonian: 

Conserved operator ÂS: [ ÂS , HS ] = 0 . (3.27) 

It then follows that [ ÂH(t) , HH(t) ] = 0, and using (3.23) that 

dÂH(t) 
= 0 . (3.28) 

dt 

The Heisenberg operator is plain constant. Thus the expectation value of the operator is 
ˆalso constant. This is consistent with comment 6 in the previous section: AH is in fact 

equal to ÂS! 

3.3 Three examples. 

Example 1. Part of the Homework. We just discuss here a few facts. Consider the Hamiltonian 

p̂2 
H = + V (x̂) , (3.29) 

2m 

where V (x) is a potential. You will show that 

d 1 

dt 
x̂ = 

m 
p̂ , 

d 
dt 

p̂ = −
(∂V 
∂x̂ 

)

. 

(3.30) 

These two equations combined give 

d2 (∂V ) 
m 
dt2 

x̂ = − 
∂x̂ 

. (3.31) 

This is the quantum analog of the classical equation 

d2 ∂V 
m 
dt2 

x(t) = − 
∂x 

, (3.32) 

which describes the classical motion of a particle of mass m in a potential V (x). Note that the 

force is F = −∂V 
∂x 
. 

Example 2. Harmonic oscillator. The Schrödinger Hamiltonian is 

HS = 
p̂2 

2m 
+ 

1 

2 
mω2x̂ 2 , (3.33) 

and is time independent. Using (3.10) we note that the Heisenberg Hamiltonian takes the form 

p̂H
2 (t) 1 2HH(t) = + mω2x̂H(t) . (3.34) 
2m 2 
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Consider now the Schrödinger operators x̂ and p̂. Using the Heisenberg equation of motion, we 

have for x̂: 

d 1 1 [ p̂2 (t)][ ]
Hx̂H(t) = x̂H(t), HH(t) = x̂H(t),

dt in in 2m 
(3.35) 

1 p̂H(t)
[ ] 1 p̂H(t) p̂H(t) 

= 2 x̂H(t), p̂H(t) = in = ,
in 2m in m m 

so that our first equation is 

d p̂H(t) 
x̂H(t) = . (3.36) 

dt m 

For the momentum operator we get 

d 1 [ ] 1 [ 1 2 
]

p̂H(t) = p̂H(t), HH(t) = p̂H(t), mω2 xH(t)dt in in 2 
(3.37) 

= 
1 1 

mω2 · 2(−in)x̂H(t) = −mω2 x̂H(t) ,
in 2 

so our second equation is 

d
p̂H(t) = −mω2 x̂H(t) . (3.38) 

dt 

Taking another time derivative of (3.36) and using (3.38) we get 

d2 
x̂H(t) = −ω2 x̂H(t) . (3.39) 

dt2 

We now solve this differential equation. Being just an oscillator equation the solution is 

ˆx̂H(t) = A cosωt + B̂ sinωt , (3.40) 

where Â and B̂ are time-independent operators to be determined by initial conditions. From 

(3.36) we can find the momentum operator 

p̂H(t) = m
d
x̂H(t) = −mω Â sinωt + mω B̂ cosωt . (3.41) 

dt 

At zero time the Heisenberg operators must equal the Schrödinger ones so, 

ˆx̂H(0) = A = ˆ ˆ = B = ˆ (3.42) x , pH(0) mω ˆ p . 

We have thus found that 
1ˆ ˆA = x , = p . ˆˆ B (3.43) 
mω 
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Finally, back in (3.40) and (3.41) we have our full solution for the Heisenberg operators of the 

SHO: 
1 

x̂H(t) = x̂ cos ωt + p̂ sinωt , 
mω 

(3.44) 
p̂H(t) = p̂ cos ωt −mω x̂ sinωt . 

Let us do a couple of small computations. Consider the energy eigenstate |n) of the harmonic 

oscillator: 

|ψ, 0) = |n) . (3.45) 

We ask: What is the time-dependent expectation value of the x operator in this state? We 

compute 

x̂) = ψ, t|x̂|ψ, t) = ψ, 0|x̂H(t)|ψ, 0) = n|x̂H(t)|n) . (3.46) 

Now we use the expression for x̂H(t): 

1 1)
x̂) = n| x̂ cosωt + p̂ sinωt |n) = n|x̂|n) cos ωt + n| p̂ |n) sinωt . (3.47) 

mω mω 

We now recall that n|x̂|n) = 0 and n| p̂ |n) = 0. So as a result we find that on the energy 

eigenstate |n), the expectation value of x is zero at all times: 

x̂ ) = 0 . (3.48) 

So energy eigenstates do not exhibit classical behavior (an oscillatory time-dependent x̂ )). 
As a second calculation let us confirm that the Heisenberg Hamiltonian is time independent 

and in fact equal to the Schrödinger Hamiltonian. Starting with (3.34) and using (3.44) we 

have 

p̂H
2 (t) 1 2HH(t) = + mω2x̂H(t)2m 2 

1 1 ( 1 )2 

= p̂ cosωt −mω x̂ sin ωt
)2 

+ mω2 x̂ cos ωt + p̂ sinωt
2m 2 mω 

cos2 ωt 2 m2ω2 sin2 ωt ω 
= p̂ + x̂2 − sin ωt cosωt(p̂x̂+ x̂p̂) (3.49) 

2m 2m 2
 

sin2 ωt 2 mω2 cos2 ωt 2 ω
 
+ p̂ + x̂ + cosωt sinωt (x̂p̂+ p̂x̂)

2m 2 2 

p̂2 1 2 = + mω2x̂ . 
2m 2 

This is what we wanted to show.
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Example 3. What are the Heisenberg operators corresponding to the simple harmonic oscillator 

creation and annihilation operators? 

Given the Schrödinger operator â, the Heisenberg operator would be denoted as âH(t), but 

for simplicity we will just denote it as â(t). Since the harmonic oscillator Hamiltonian is time 

independent, we can use the definition 

Ht ˆ − H t iω t N̂ −iωt N̂â(t) ≡ e * 
i 

a e * 
i 

= e a e , (3.50) 

where we wrote H = nω(N̂ + 
2
1) and noted that the additive constant has no effect on the 

commutator. A simple way to evaluate a(t) goes through a differential equation. We take the 

time derivative of the above to find 

iω t ˆ −iωt ˆ iω t ˆ −iωt N̂d
â(t) = e N (iω N̂) â e N − e N â (iω N̂)e ,

dt (3.51) 
N 
[ ] −iωt N̂ N −iωt N̂= iω eiω t ˆ ˆ a = a e N , ̂ e −iω eiω t ˆ . 

we recognize in final right-hand side the operator a(t) so we have obtained the differential 

equation 
d 
â(t) = −iωt â(t) . (3.52) 

dt 
Since â(t = 0) = â, the solution is 

−iωt ˆâ(t) = e a . (3.53) 

Together with the adjoint of this formula we have 

−iωt ˆâ(t) = e a . 
(3.54) 

iωt ˆ† â†(t) = e a . 

The two equations above are our answer. As a check we consider the operator equation 

n 
x̂ = (â + â †) , (3.55) 

2mω 

whose Heisenberg version is 

n n −iωtˆ iωtˆ†)x̂H(t) = (â(t) + â †(t)) = (e a + e a . (3.56) 
2mω 2mω 

Expanding the exponentials, we recognize, 

n ( )

x̂H(t) = (â + â †) cosωt + i(â † − â) sinωt ,
2mω 

(3.57) 
1 

= x̂ cosωt + p̂ sin ωt , 
mω 

in agreement with (3.44).
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4 Coherent states of the Harmonic oscillator
 

Coherent states are quantum states that exhibit some sort of classical behavior. We will in

troduce them and explore their properties. To begin our discussion we introduce translation 

operators. 

4.1 Translation operator 

Let us construct unitary translation operators Tx0 that acting on states moves them (or trans

lates them) by a distance x0, where x0 is a real constant with units of length: 

i ˆTranslation operator: Tx0 ≡ e − * p x0 . (4.1) 

This operator is unitary because it is the exponential of an antihermitian operator (p̂ is hermi

tian, and ip̂ antihermitian). The multiplication of two such operators is simple: 

i i iˆ − p̂ (x0+y0)Tx0 Ty0 = e − * p x0 e * p yˆ 0 = e − * , (4.2) 

since the exponents commute (eAeB = eA+B if [A, B] = 0). As a result 

Tx0 Ty0 = Tx0+y0 . (4.3) 

The translation operators form a group: the product of two translation is a translation. There 

is a unit element T0 = I corresponding to x0 = 0, and each element Tx0 has an inverse T−x0 . 

Note that the group multiplication rule is commutative. 

It follows from the explicit definition of the translation operator that 

)† 
i i p x0 p̂ (−x0) )−1(Tx0 = e * ˆ = e − * = T−x0 = (Tx0 . (4.4) 

confirming again that the operator is unitary. In the following we denote (Tx0 )
† simply by Tx

† 
0 
. 

We say that Tx0 translates by x0 because of its action
2 on the operator x̂ is as follows: 

i i 
Tx

† 
0 
xTˆ x0 = e * p xˆ 0 x e − * p x0 = x̂+ 

i 
[ˆ = x̂+ˆ ˆ p, x̂]x0 x0 , (4.5) 

n 

where we used the formula eABe−A = B + [A, B] + . . . and the dots vanish in this case because 

[A, B] is a number (check that you understand this!). 

To see physically why the above is consistent with intuition, consider a state |ψ) and the 

expectation value of x̂ on this state 

x̂)
ψ = ψ| x̂ |ψ) (4.6) 

2The action of a unitary operator U on an operator O is defined as O → U†OU . 
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Now we ask: What is the expectation value of x̂ on the state Tx0 |ψ)? We find 

x̂) = ψ|T † ˆ |ψ)
ψ x0 

xTx0 (4.7) 
Tx0 

The right-hand side explains why Tx
† 
0 
ˆ is the natural thing to compute! Indeed using our xTx0 

result for this 

x̂)
ψ = ψ|(x̂ + x0)|ψ) = x̂)

ψ + x0 . (4.8) 
Tx0 

The expectation value of x̂ on the displaced state is indeed equal to the expectation value of x̂ 

in the original state plus x0, confirming that we should view Tx0 |ψ) as the state |ψ) displaced a 

distance x0. 

As an example we look at position states. We claim that on position states the translation 

operator does what we expect: 

Tx0 |x1) = |x1 + x0) . (4.9) 

We can prove (4.9) by acting on the above left-hand side an arbitrary momentum bra p|: 
i− px1 

i i e * 
px0 |x1)p|Tx0 |x1) = p|e − * ˆ = e − * px0 √ = p|x1 + x0) , (4.10) 

2πn 

proving the desired result, given that p| is arbitrary. It also follows from unitarity and (4.9) 

that 

T † |x1) = T−x0 |x1) = |x1 − x0) . (4.11) x0 

Taking the Hermitian conjugate we find 

x1|Tx0 = x1 − x0| . (4.12) 

In terms of arbitrary states |ψ), we can also discuss the action of the translation operator 
by introducing the wavefunction ψ(x) = x|ψ). Then the “translated” state Tx0 |ψ) has a 

wavefunction 

x|Tx0 |ψ) = x − x0|ψ) = ψ(x − x0) . (4.13) 

Indeed, ψ(x − x0) is the function ψ(x) translated by the distance +x0. For example, the value 

that ψ(x) takes at x = 0 is taken by the function ψ(x − x0) at x = x0. 
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4.2 Definition and basic properties of coherent states
 

We now finally introduce a coherent state |x̃0) of the simple harmonic oscillator. The state is 

labeled by x0 and the tilde is there to remind you that it is not a position state.3 Here is the 

definition 

i px0 |0) ,Coherent state: |x̃0) ≡ Tx0 |0) = e − * ˆ (4.14) 

where |0) denotes the ground state of the oscillator. Do not confuse the coherent state with a 

position state. The coherent state is simply the translation of the ground state by a distance x0. 

This state has no time dependence displayed, so it may be thought as the state of the system 

at t = 0. As t increases the state will evolve according to the Schrödinger equation, and we will 

be interested in this evolution, but not now. Note that the coherent state is well normalized 

x̃0|x̃0) = 0|T † |0) = 0|0) = 1 . (4.15) x0 
Tx0 

This had to be so because Tx0 is unitary. 

To begin with let us calculate the wavefunction associated to the state: 

ψx0 (x) ≡ x|x̃0) = x|Tx0 |0) = x − x0|0) = ψ0(x − x0) , (4.16) 

where we used (4.12) and we denoted x|0) = ψ0(x), as the ground state wavefunction. So, as 

expected the wavefunction for the coherent state is just the ground state wavefunction displaced 

x0 to the right. This is illustrated in Figure 2. 

Figure 2: The ground state wavefunction ψ0(x) displaced to the right a distance x0 is the wavefunction 
ψ0(x − x0). The corresponding state, denoted as |x̃0), is the simplest example of a coherent state. 

Let us now do a few sample calculations to understand better these states. 

3This is not great notation, but it is better than any alternative I have seen! 
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1. Calculate the expectation value of x̂ in a coherent state.
 

† 
x0 
x̂ Tx0 (4.17)
 x̃0|x̂ |x̃0) = 0|T |0) = 0|(x̂ + x0)|0) , 

where we used (4.5). Recalling now that 0|x̂|0) = 0 we get 

x̃0|x̂ |x̃0) = x0 . (4.18) 

Not that surprising! The position is essentially x0. 

2. Calculate the expectation value of p̂ in a coherent state. Since p̂ commutes with Tx0 we 

have 

x̃0|p̂ |x̃0) = 0|T † 
x0 
p̂ Tx0 |0) = pT0| ˆ † 

x0 
Tx0 |0) = 0| p̂ |0)
 =
 0 , (4.19)
 

The coherent state has no (initial) momentum. It has an initial position (as seen in 1. 

above) 

3. Calculate the expectation value of the energy in a coherent state. Note that the coherent 

state is not an energy eigenstate (nor a position eigenstate, nor a momentum eigenstate!). 

With H the Hamiltonian we have 

x̃0|H|x0) = 0|T † 
x0 
HTx0 |0)
 (4.20)
 .
 

We now compute 

p̂2 p̂2(
 )
1
 1
† † mω2x̂2 mω2(x̂ + x0)
2T
 HTx0 = T Tx0

+
 +
=
 x0 x0 2m 2
 2m 2
 (4.21)
 
1
 

H + mω2 mω2 x 2 x0x̂+=
 0 . 2
 

where we recall that Tx0 commutes with p̂ and used eqn. (4.5). Back in (4.20) we have 

x̃0|H|x0) = 0|H|0)+ mω2 x0 0|x̂|0) +
1 
mω2 x0

2 . (4.22) 
2 

Recalling that the ground state energy is nω/2 and that in the ground state x̂ has no 

expectation value we finally get 

x̃0|H|x0) =
1 1 

mω2 x0
2 . (4.23) nω + 

2 2 

This is reasonable: the total energy is the zero-point energy plus the potential energy of 

a particle at x0. The coherent state |x̃0) is the quantum version of a point particle on a 

spring held stretched to x = x0. 
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4.3 Time evolution and uncertainties 

Evolving the coherent states in time is a somewhat involved procedure that will be explained 

later. We can discuss time evolution quite easily using the Heisenberg picture, since we have 

already calculated in (3.44) the time-dependent Heisenberg operators x̂H(t) and p̂H(t). 

If we have at time equal zero the coherent state |x̃0) then at time t we write the time-evolved 

state as |x̃0, t). We now ask what is the (time-dependent) expectation value of x̂ on this state: 

x̂)(t) = x̃0, t| x̂ |x̃0, t) = x̃0| x̂H(t) |x̃0) . (4.24) 

Using (3.44) we get 

x̂)(t) = x̃0|
(

x̂ cosωt + 
1 

mω 
p̂ sin ωt

)

|x̃0) . (4.25) 

Finally, using (4.18) and (4.19) we get 

x̂)(t) = x̃0| x̂H(t) |x̃0) = x0 cosωt . (4.26) 

The expectation value of x̂ is performing oscillatory motion! This confirms the classical inter

pretation of the coherent state. For the momentum the calculation is quite similar, 
( )

p̂)(t) = x̃0| p̂H(t) |x̃0) = x̃0| p̂ cosωt −mω x̂ sin ωt |x̃0) (4.27) 

and we thus find 

p̂)(t) = x̃0| p̂H(t) |x̃0) = −mω x0 sinωt , (4.28) 

which is the expected result as it is equal to m d x̂)(t). 
dt 

We have seen that the harmonic oscillator ground state is a minimum uncertainty state. 

We will now discuss the extension of this fact to coherent states. We begin by calculating the 

uncertainties Δx and Δp in a coherent state at t = 0. We will see that the coherent state 

has minimum uncertainty for the product. Then we will calculate uncertainties of the coherent 

state as a function of time! 

We have 

x̃0|x̂2|x̃0) = 0|T † x̂2Tx0 |0) = 0|(x̂ + x0)
2|0) = 0|x̂2|0) + x 2 . (4.29) x0 0 

The first term on the right-hand side was calculated in (1.58). We thus find 

2|˜ n 
x̃0|x̂ x0) = + x 2 . (4.30) 02mω 

Since x̃0|x̂|x̃0) = x0 we find the uncertainty 

2|˜ n 
(Δx)2 = x̃0|x̂ x0) − ( x̃0|x̂|x̃0))2 = + x 2 − x 2 0 02mω 
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n → (Δx)2 = , on the state |x̃0) . (4.31) 
2mω 

For the momentum operator we have, using (1.58), 

mnω†|0 Tx2|x̃0) 2Tx0 |0) = 0|p̂2|0)˜
 (4.32)
 x0|p̂ =
 p̂ 
 = .
 
0 2
 

Since x̃0|p̂|x̃0) = 0, we have 

(Δp)2 = 
mnω 
2 

, on the state |x̃0) . (4.33) 

As a result, 
n 

ΔxΔp = 
2 
, on the state |x̃0) . (4.34) 

We see that the coherent state has minimum ΔxΔp at time equal zero. This is not surprising 

because at this time the state is just a displaced ground state. 

For the time dependent situation we have 

(Δx)2(t) = x̃0, t|x̂2|x̃0, t) − x̃0, t|x̂|x̃0, t)
)2 

2 
)2 

(4.35)
 x̃0|x̂ (t)|x̃0) − x̃0|x̂H(t)|x̃0)=
 H

2 
H(t)|x̃0) − x
 2 0 cos 

2 ωt , x̃0|x̂=
 

where we used the result in (4.26). The computation of the first term takes a few steps:
 

x̃0|x̂2 H(t)|x̃0) = x̃0|
( 1 )2 

x̂ cos ωt + p̂ sinωt
mω 

|x̃0) 

= x̃0|x̂2|x̃0) cos 2 ωt + x̃0|p̂2|x̃0)
(sinωt )2 

+ 
cosmω sin mω 

x̃0| x̂p̂+ p̂x̂
)
|x̃0)

mω mω 
( ) )2 

= 
n 

+ x 2 cos 2 ωt + 
mnω (sin ωt 

+ 
cosmω sinmω 

x̃0| x̂p̂+ p̂x̂
)
|x̃0) .02mω 2 mω mω 

We now show that the last expectation value vanishes: 

x̃0| x̂p̂+ p̂x̂
)
|x̃0) = 0| (x̂ + x0)p̂ + p̂(x̂ + x0)

)
|0) 

= 0| x̂p̂+ p̂x̂
)
|0) 

n (4.36) 
= i 0| (â + â †)(â † − â) + (â † − â)(â + â †)

)
|0)

2 

n 
= i 0| ââ† + (−â)â †

)
|0) = 0 . 

2 

As a result, 

x̃0|x̂2 H(t)|x̃0) =
 
(

n ) mnω (sinωt )2 
+ x0

2 cos 2 ωt + 
2mω 2 mω 

(4.37)
 
n 

= + x0
2 cos 2 ωt . 

2mω 

31 

〈
(
〈

〈
(
〈

〈

〈 〈 〈

〈

〈 〈

〈 〈 〈
(

〈
(

〈 〈
(

〈
(

(

〈
(

〈
(

〈

http:using(1.58


 
�
 

 
�
 

 

 

 

Therefore, finally, back in (4.35) we get
 

n 
(Δx)2(t) = . (4.38) 

2mω 

The uncertainty Δx does not change in time as the state evolves! This suggests, but does 

not yet prove, that the state does not change shape4 . It is therefore useful to calculate the 

time-dependent uncertainty in the momentum: 

(Δp)2(t) = x̃0, t|p̂2|x̃0, t) − x̃0, t|p̂|x̃0, t)
)2 

= x̃0|p̂H2 (t)|x̃0) − x̃0|p̂H(t)|x̃0)
)2 

(4.39) 

= x̃0|p̂H2 (t)|x̃0) −m 2ω2 x0
2 sin2 ωt , 

where we used (4.28). The rest of the computation (recommended!) gives 

x̃0|p̂H2 (t)|x̃0) =
1 
mnω + m 2ω2 x0

2 sin2 ωt , (4.40) 
2 

so that we have 

(Δp)2(t) = 
mnω

. (4.41) 
2 

This together with (4.38) gives 

n 
Δx(t)Δp(t) = , on the state |x̃0, t) . (4.42) 

2 

The coherent state remains a minimum ΔxΔp packet for all times. Since only gaussians have 

such minimum uncertainty, the state remains a gaussian for all times! Since Δx is constant the 

gaussian does not change shape. Thus the name coherent state, the state does not spread out 

in time, it just moves “coherently” without changing its shape. 

In the harmonic oscillator there is a quantum length scale d that can be constructed from 

n, m, and ω. This length scale appears, for example, in the uncertainty Δx in (4.38). We thus 

define 
n 

d ≡ , (4.43) 
mω 

and note that 
d 

Δx(t) = √ . (4.44) 
2 

The length d is typically very small for a macroscopic oscillator. A coherent state with a large 

x0 –large compared to d– is classical in the sense that the position uncertainty ∼ d, is much 

smaller than the typical excursion x0. Similarly, the momentum uncertainty 

d 
Δp(t) = mω √ . (4.45) 

2 

4By this we mean that the shape of |ψ(x, t)|2 does not change: at different times |ψ(x, t)|2 and |ψ(x, t ′ )|2 

differ just by an overall displacement in x. 
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is much smaller than the typical momentum mωx0, by just the same factor ∼ d/x0. 
Problem. Prove that 

Δp(t) Δx(t) 1 
= =	 (4.46) � � �	 

2 
0p̂2)(t) x̂2)(t) 1 + 

x

d2 

where the overlines on the expectation values denote time average. 

4.4 Coherent states in the energy basis 

We can get an interesting expression for the coherent state |x̃0) by rewriting the momentum 

operator in terms of creation and annihilation operators. From (1.18) we have 

mωn	 n 
p̂ = i (â † − â) = i √ (â † − â) .	 (4.47) 

2	 2 d 

The final form is also nice to see that units work. We now have that the coherent state (4.14) 

is given by 
( i ) ( x0 

)

|x̃0) = exp − ˆ |0) = exp (ˆ† − ˆ |0) .	 (4.48) p x0 √ a a)
n	 2d 

Since â|0) = 0 the above formula admits simplification: we should be able to get rid of all the 

â’s! We could do this if we could split the exponential into two exponentials, one with the 

â†’s to the left of another one with the â’s. The exponential with the â’s would stand near 

the vacuum and give no contribution, as we will see below. For this purpose we recall the 

commutator identity 

X+Y X Y [X,Y ]e = e e e − 2

1 
, if [X, Y ] commutes with X and with Y. (4.49) 

Think of the term we are interested in as it appears in (4.48), and identify X and Y as 
( x0 x0 

)	 x0 x0 
exp √ â† − √ â → X = √ â† , Y = −√ â (4.50) 

2d 2d	 2d 2d 

Then 
2	 2x	 x0 † 0[X, Y ] = − [ â , â] =	 (4.51) 

2d2 2d2 

and we find 

( x0 x0 
) ( x0 

) ( x0 
) ( 1 x2)

exp √ â† − √ â = exp √ â† exp −√ â exp − 0 (4.52) 
2d 2d	 2d 2d 4 d2

Since the last exponential is just a number, and exp(γâ)|0) = |0), for any γ, we have 
( x0 x0 

) ( 1 x2) ( x0 
)

exp √ â† − √ â |0) = exp − 0 exp √ â† |0) . (4.53) 
2d 2d	 4 d2 2d 
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As a result, our coherent state in (4.48) becomes 

( i ) ( 1 x2) ( x0 
)

|x̃0) = exp − p x0 |0) = exp − 0 exp √ â† |0) . (4.54) ˆ
d2n 4 2d 

While this form is quite nice to produce an expansion in energy eigenstates, the unit normaliza

tion of the state is not manifest anymore. Expanding the exponential with creation operators 

we get 

0|x̃0) = 

∞ 

exp
(

− 1 x
2)

· 1 
(

√ x0 
)n 

(â †)n|0)
d24 n! 2d

n=0 

(4.55) 
2∞ ( 1 x ) 1 ( x0 

)n 

= exp − 0 · √ √ |n)
d24 n! 2d

n=0 

We thus have the desired expansion: 

∞ ( 1 x2) 1 ( x0 
)n 

|x̃0) = cn|n) , with cn = exp − 0 · √ √ . (4.56) 
4 d2 n! 2d

n=0 

Since the probability to find the energy En is equal to c
2 
n, we note that 

2 2( x ) 1 ( x )n 2 0 0 cn = exp − · (4.57) 
2d2 n! 2d2

If we define the quantity λ(x0, d) as 

2x
λ ≡ 0 , (4.58) 

2d2 

we can then see that 

λn 
c 2 n = e −λ . (4.59) 

n! 

The probability to measure an energy En = nω(n + 
2
1) in the coherent state is cn

2 , so the cn
2 ’s 

must define a probability distribution for n ∈ Z, parameterized by λ. This is in fact the familiar 

Poisson distribution. It is straightforward to verify that 

∞ ∞ 
λn 2 −λ −λ λ cn = e = e e = 1 , (4.60) 
n! 

n=0 n=0 
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as it should be. The physical interpretation of λ can be obtained by computing the expectation 

value of n:5 

∞ ∞ ∞
λn λnd d2 −λ −λ λ n) ≡ nc n = e n = e λ = e −λ λ e = λ . (4.61) 
n! dλ n! dλ 

n=0 n=0 n=0 

Therefore λ equals the expected value n). Note that n) is just the expected value of the 

number operator N̂ on the coherent state. Indeed, 

x̃0|N̂ |x̃0) = cmcn m|N̂ |n) = cmcn nδm,n = n c n 
2 = n) . (4.62) 

n,m n,m n 

It is also easy to verify (do it!) that 

∞ 
λ2 n 2) ≡ n 2 c 2 = + λ . (4.63) n 

n=0 

It then follows that 

√ 
(Δn)2 = n 2) − n)2 = λ → Δn = λ . (4.64) 

In terms of energy we have E = nω(n + 1
2
) so that 

( 1) ( 1)
E) = nω n) + = nω λ + . (4.65) 

2 2

Similarly, 

(( 1)2) ( 1) ( 1)2ω2 2ω2 λ2E2) = n 2ω2 n + 2 = n n + n + = n + λ + λ + , (4.66) 
2 4 4

so that ( 1)
E2) = n 2ω2 λ2 + 2λ + (4.67) 

4
The energy uncertainty is thus obtained as 

( 1 ( 1)2)
(ΔE)2 = E2) − E)2 = n 2ω2 λ2 + 2λ + − λ + = n 2ω2 λ , (4.68) 

4 2

so that √ 
ΔE = nω λ = nω √ x0 . (4.69) 

2d 

Note now the fundamental inequality, holding for x0/d ≫ 1, 
x0 

( x0 
)2 1 

nω ≪ ΔE = nω √ ≪ E ) = nω √ + nω . (4.70) 
2d 2d 2 

5Here we are thinking of n as a random variable of the probability distribution. In the quantum viewpoint 
n) is simply the expectation value of the number operator. 
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2d 

We see that the uncertainty ΔE is big enough to contain about √x0 levels of the harmonic 

oscillator –a lot of levels. But even then, ΔE is about a factor √x0 smaller than the expected 

value E) of the energy. So, alternatively, 

ΔE x0 E)≃ √ ≃ . (4.71) 
nω 2d ΔE 

This is part of the semi-classical nature of coherent states. 

——————————————————————————————

Example of Poisson distribution. Consider a sample of radioactive material with N0 ≫ 1 atoms 

at t = 0. Assume that the half-lifetime of the material is τ0, which means that the number 

N(t) of atoms that have not yet decayed after time t > 0 is given by 

dN N0
N(t) = N0 exp(−t/τ0) → (t = 0) = . 

dt τ0 

It follows that in the time interval t ∈ [0, Δt], with Δt ≪ τ0 we expect a number of decays 

N0Δt ≡ λ . 
τ0 

One can then show that the probability pn to observe n decays during that same time interval 

Δt is (approximately) given by the Poisson distribution: pn = λ
n 
e−λ . 

n! 

——————————————————————————————

4.5 General coherent states and time evolution 

We wrote earlier coherent states using creation and annihilation operators: 

( i ) ( x0 
)

|x̃0) = exp − p x0 |0) = exp √ (ˆ a) |0) . (4.72) ˆ a † − ˆ
n 

Such coherent states can be written as 

x0α (â†−ˆ|α) ≡ e a)|0) , with α = √ . (4.73) 

This notation is not free of ambiguity: the label α in the coherent state above is now the 

coefficient of the factor â† − â in the exponential. An obvious generalization is to take α to be 

a complex number: α ∈ C. This must be done with a little care, since the key property of the 

operator in the exponential (4.73) is that it is antihermitian (thus the exponential is unitary, 

as desired). We thus define 

)
|α) ≡ D(α)|0) ≡ exp αâ† − α ∗ â |0) , with α ∈ C . (4.74) 

2d 

2d 
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In this definition we introduced the unitary ‘displacement’ operator 
( )

D(α) ≡ exp αâ† − α ∗ â . (4.75) 

Since D(α) is unitary it is clear that α|α) = 1. 

The action of the annihilation operator on the states |α) is quite interesting, 

â|α) = ˆ αâ†−α∗â|0) = 
[
ˆ αâ†−α∗â

]
|0)a e a , e 

(4.76) 
= 
[
ˆ a a 

]
αâ†−α∗â|0) αeαâ

†−α∗ˆa , αˆ† − α ∗ ˆ e = a|0) , 
so that we conclude that 

â |α) = α |α) . (4.77) 

This result is kind of shocking: we have found eigenstates of the non-hermitian operator â. 

Because â is not hermitian, our theorems about eigenstates and eigenvectors of hermitian 

operators do not apply. Thus, for example, the eigenvalues need not be real (they are not, 

in general α ∈ C), eigenvectors of different eigenvalue need not be orthogonal (they are not!) 

and the set of eigenvectors need not form a complete basis (coherent states actually give an 

overcomplete basis!). 

Ordering the exponential in the state |α) in (4.74) we find 

|α|2 αâ† 
2|α) = e −
1 

e |0) . (4.78) 

Exercise. Show that ( 1 )

β|α) = exp − (|α|2 + |β|2) + β ∗ α . (4.79) 
2

β∗â+αâ† Hint: You may find it helpful to evaluate e in two different ways using (4.49). 

To find the physical interpretation of the complex number α we first note that when real, 

as in (4.73), α encodes the initial position x0 of the coherent state (more precisely, it encodes 

the expectation value of x̂ in the state at t = 0). For complex α, its real part is still related to 

the initial position: 

√d d 
α|x̂|α) = √ α|(â + â †)|α) = √ (α + α ∗ ) = d 2 Re(α) , (4.80) 

2 2

where we used (1.18) and (4.77) both on bras and on kets. We have thus learned that 

x̂)
Re(α) = √ . (4.81) 

2 d 

It is natural to conjecture that the imaginary part of α is related to the momentum expectation 

value on the initial state. So we explore 
√ 

in in in n 2 
α|p̂|α) = √ α|(â †− â)|α) = −√ (α−α ∗ ) = −√ (2iIm(α)) = Im(α) , (4.82) 

2d 2d 2d d 
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2 n 

and learn that 
p̂) d 

Im(α) = √ . (4.83) 

The identification of α in terms of expectation values of x̂ and p̂ is now complete: 

x̂) p̂) d 
α = √ + i √ . (4.84) 

2 d 2 n 

A calculation in the problem set shows that 

i )
α â† − α ∗ â = − p̂ x) − p̂) x̂ , (4.85) 

n 

affording yet another rewriting of the general coherent state (4.74), valid when α is defined as 

in (4.84): 

( ip̂ x) i p̂) x̂)|α) = exp − + |0) . (4.86) 
n n 

In order to find the time evolution of the coherent state we can use a trick from the Heisen

berg picture. We have using (4.74) 

−iHt −iHt †−α∗ˆ
(

−iHt †−α∗ˆ iHt 
)

−iHt αâ αâ a|α, t) ≡ e * |α) = e * e a|0) = e * e e * e * |0) (4.87) 

For a time independent Hamiltonian (as that of the SHO) and a Schrödinger operator O, 

we have 
iHt/n O −iHt/nOH(t) = e e (4.88) 

and therefore with the opposite signs for the exponentials we get 

−iHt/n O eiHt/n e = OH(−t) . (4.89) 

Such a relation is also valid for any function of an operator: 

−iHt/n F (O) eiHt/n e = F (OH(−t)) . (4.90) 

as you can convince yourself is the case whenever F (x) has a good Taylor expansion in powers 

of x. It then follows that back in (4.87) we have 

( )
−iωt/2|0)|α, t) = exp αâ†(−t) − α ∗ â(−t) e . (4.91) 

−iωt ˆ iωt ˆRecalling ((3.53)) that â(t) = e a, and thus â†(t) = e a†, we find 

( )
−iωt/2 αe−iωtˆ iωtˆ† − α ∗|α, t) = e exp a e a |0) . (4.92) 
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Looking at the exponential we see that it is in fact the displacement operator with α → αe−iωt . 

As a result we have shown that 

|α, t) = e −iωt/2|e −iωtα) . (4.93) 

This is how a coherent state |α) evolves in time: up to an irrelevant phase, the state remains 
−iωtα.a coherent state with a time-varying parameter e In the complex α plane the state is 

represented by a vector that rotates in the clockwise direction with angular velocity ω. The α 

plane can be viewed as having a real axis that gives x) (up to a proportionality constant) and 

an imaginary axis that gives p̂) (up to a proportionality constant). It is a phase space and the 

evolution of any state is represented by a circle. This is illustrated in Figure 3. 

Figure 3: Time evolution of the coherent state |α). The real and imaginary parts of α determine the 
expectation values x) and p) respectively. As time goes by the α parameter of the coherent state 
rotates clockwise with angular velocity ω. 

An alternative, conventional, calculation of the time evolution begins by expanding the 

exponential in (4.78) to find: 

∞ 
− 1 |α|2 1 

2|α) = e √ αn|n) . (4.94) 
n! n=0 
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The time-evolved state is then given by the action of exp(−iHt/n): 
∞ 

1
−iHt 
* 

1

2

1

2
|α|2− −inω(n+αn√= e
 e
 )t/n|n)|α, t) ≡ e
 |α)


n! n=0 
∞ 

1|α|21

2
− −iωtn −iωt/2|n)αn e e√
= e
 (4.95)
 n! n=0 

∞ 
1|α|21

2
−iωt/2 − −iωtα)n|n)√ (e
= e
 e
 .
 

n! n=0 
� �v 

−iωtα|2Using (4.94) and noting that |e = |α|2, we identify the terms under the brace as a 

coherent state |αe−iωt). This gives the earlier result (4.93). 
In the coherent state |α) the expectation value of N̂ is easily calculated 

N̂)α = α|N̂ |α) = α|â†â|α) = α|α ∗ α|α) = |α|2 . (4.96) 

To find the uncertainty ΔN we also compute 

ˆ †ˆ †ˆN2)α = α| â a â a|α) = |α|2 α| â â†|α) 
(4.97) 

†ˆ= |α|2 α| [â , â†] + â a|α) = |α|2 1 + |α|2
)
. 

From these results we get 

(ΔN)2 = N̂2)α − N̂)2 = |α|2 + |α|4 − |α|4 = |α|2 (4.98) α 

so that 

ΔN = |α| . (4.99)
 

in Figure 3 the magnitude of the rotating phasor is ΔN and the square of the magnitude is the 
ˆexpectation value N)α. 

We will soon discuss electromagnetic fields and waves as coherent states of photons. For 

such waves a number/phase uncertainty exists. A rough argument goes as follows. For a wave 

with N photons with frequency ω, the energy is E = Nnω and the phase φ of the wave goes 

like φ = ωt. It follows that ΔE ∼ ΔNnω and Δφ = ωΔt (with the admittedly ambiguous 

meaning of Δt). Therefore 

ΔEΔt ≥ n 
2 

→ ΔNnω 
Δφ 
ω 

≥ n 
2 

→ ΔNΔφ ≥ 1 
2 
. (4.100) 

A better intuition for this result follows from our coherent state |α) for which we know that 

ΔN = |α|. The position and momentum uncertainties are the same as for the ground state: 

d n 
Δx = √ , Δp = √ (4.101) 

2 d 2 
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When we measure x on the state |α) we expect to get a good fraction of values in a range Δx 

about the expected value x) of x. This is, of course, just a rough estimate. 

1
2

1
2

x) −
 x) +
Representative range for measured x = [
 Δx ,
 Δx] (4.102)
 

√ 
Dividing by 2d we have 

[
 ]
 

(4.103)
 
x)√ 
2d 

x)√ 
2d 

x
 1
2

1
2

√
 −
Representative range for measured
 +
=
 ,
 
2d
 

It follows that the position measurements, indicated on the horizontal axis of Figure 3, spread 

over a representative range of width one. Similarly, for momentum we have 

1
2

1
2

p) −
 Δp , p)+
Representative range for measured p = [
 Δp] (4.104)
 

√ 
Multiplying by d/( 2n), we have 

=
 
[
 ]
 

(4.105)
 
p) d √ 
2n 

p) d √ 
2n 

p d√ 1
2

1
2

−
Representative range for measured
 +
,
 
2n
 

It follows that the momentum measurements, indicated on the vertical axis of Figure 3, spread
 

Figure 4: When doing measurements on |α) the uncertainties on the value of α can be represented 
by a blob of unit diameter centered at α. The projections of this blob on the axes are, up to scale, 
the uncertainties Δx and Δp. 

over a representative range of width one. We can thus reconsider the plot, this time indicating 

the ranges of values expected on the horizontal and vertical axes. Those ranges can be viewed 

as some kind of uncertainty in the value of α that we could find by measurements on the state 
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|α). We draw a blob of unit diameter centered at α whose projections down along the axes 

reproduce the uncertainty ranges. This is shown in Figure 4. In the spirit of the discussion 

on time dependence, this blob must be imagined rotating with angular frequency ω. In such 

picture we have a phase ambiguity Δφ, represented in the picture as the angle subtended by 

the uncertainty blob. Since the blob has diameter one and is centered at α, which is a distance 

|α| from the origin, we have 
1 

Δφ ≃ (4.106) |α| 
Recalling that ΔN = |α| we finally obtain that for our coherent state 

ΔNΔφ ≃ 1 . (4.107) 

This is a familiar relation for coherent states of light. It then relates the uncertainty in the 

number of photons to the uncertainty in the phase of the wave. 

5 Squeezed states 

Squeezed states of the harmonic oscillator are states that are obtained by acting on the ground 

state with an exponential that includes terms quadratic in creation operators. They are the 

most general states for which ΔxΔp = n/2, thus achieving saturation of the uncertainty bound. 

5.1 Squeezed vacuum states 

One useful way to motivate the introduction of squeezed states is to consider the ground state of 

a harmonic oscillator Hamiltonian with mass and frequency parameters m1 and ω1, respectively: 

p2 1 
H1 = + m1ω1

2 x 2 . (5.1) 
2m1 2 

Such ground state has uncertaintites Δx and Δp that follow from (1.58) : 

n 
Δx = ,

2m1ω1 
(5.2) 

nm1ω1
Δp = . 

2 

Note that the product of uncertainties saturates the lower bound: 

n 
ΔxΔp = . (5.3) 

2 

Now we consider the following situation: suppose at time t = 0− the wavefunction is indeed 

that of the ground state of the oscillator. At t = 0, however, the oscillator parameters change 
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instantaneously from (m1, ω1) to some (m2, ω2) that define a second, different Hamiltonian: 

p2 1 2H2 = + m2ω2
2 x . (5.4) 

2m2 2 

During this change the wavefunction is assumed not to change, so at t = 0+ the wavefunction 

is still the same – the ground state of H1. Since the Hamiltonian changed, however, the state 

of the system is no longer an energy eigenstate: the gaussian wavefunction that is a ground 

state for H1 is not a ground state of H2. In fact it is not an energy eigenstate of H2 and its 

time evolution will be nontrivial. We will see that the ground state of H1 is indeed a squeezed 

state of H2. 

Since the wavefunction does not change, at t = 0+ the uncertainties in (5.2) do not change, 

and we can rewrite 

m2ω2 n −γ n 
Δx = = e , 

m1ω1 2m2ω2 2m2ω2 
(5.5)
 

m1ω1 nm2ω2 γ nm2ω2
Δp = = e , 

m2ω2 2 2 

where we defined the real constant γ by 

m1ω1 
e γ ≡ . (5.6) 

m2ω2 

We learn from (5.5) that at t = 0+ the uncertainties, from the viewpoint of the second Hamil

tonian, have been squeezed from the values they would take on the H2 ground state: if γ > 0, 

the position uncertainty is reduced and the momentum uncertainty increased. Of course, the 

product still saturates the bound. 

To work out the details of the state at t = 0+ we need to relate the creation and annihilation 

operators of the two Hamiltonians. We note that the operators x and p have not been changed, 

we are not speaking about two oscillating particles, but rather a single one, with coordinate 

measured by the operator x and momentum measured by the operator p. We thus use the 

expression for x and p in terms of a, a† (equation (1.18) to write 

n
 n 
) = 

2m2ω2 

(â2 + â † 2)

† 
1(â1 + âx =
 

2m1ω1 
(5.7)
 

m1ω1n 
)
 =
 −i
 m2ω2n 

2
 
(â2 − â† 2)


† 
1− i
 (â1 − âp =
 

2
 

Using the definition of eγ we then have 

† 
1 = e
 γ (â2 + ˆ† a2) ,â1 + â 

(5.8)
 
† 
1 = e
 −γ (â2 − ˆ† a2) .â1 − â
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2)
† 

ˆ ˆ cosh γ + ˆa = a a1 2 

†Solving these equations for (â1, â1) in terms of (â2, â we find
 

sinh γ ,
 † 
2 

(5.9)
 
â
† 1 =
 â2 sinh γ + â † 2 cosh γ .
 

Note that the second equation is simply the adjoint of the first equation. The above relations
 

are called Bogoliubov transformations. Notice that they preserve the commutation algebra. You
 
† 

1] 2 operators. 

We can also obtain the second set of operators in terms of the first set by changing γ into −γ, 
as implied by the relations (5.8) : 

†can check that [â1, â 1 using (5.9) and the commutation relation of the â2 and â=
 

† 
1â2 = â1 cosh γ − â sinh γ ,
 

(5.10)
 
â
† 2 =
 − â1 sinh γ + â
 † 1 cosh γ .
 

We can now examine explicitly the question of the ground state. The initial state is the
 

ground state of H1 denoted as |0)(1). Its defining property is that it is killed by a1: 

â1 |0)(1) = 0 . (5.11) 

Using equation (5.9) we have 

† 
2 sinh γ

)
|0)(1) â2 cosh γ + â 0 . (5.12)
 =
 

† 
2Solving this equation means finding some expression for |0)(1) in terms of some combination of a 

operators acting on |0)(2). We should be able to write the original ground-state wavefunction in 

†††† 

terms of eigenfunctions of the second Hamiltonian, or equivalently, write the original state as a 

superposition of energy eigenstates of the second Hamiltonian. Since the original wavefunction is 

even in x, only states with even number of creation operators should enter in such an expansion. 

We thus expect a solution of the form 

† †|0)(1) = c0|0)(2) |0)(2) |0)(2) c2 â c4 â2â2â2â (5.13)
 +
 +
 +
2â . . . ,
 2 2

where the cn’s are coefficients to be determined. While we could proceed recursively, it is in 

fact possible to write an ansatz for the state and solve the problem directly. 
†We write an educated guess that uses the exponential of an expression quadratic in â2: 

(
 )
1
 † 

In here the functions f(γ) and N (γ) are to be determined. Equation (5.12) gives 

†|0)(1) = N (γ) −
 |0)(2)f(γ) â
 (5.14)
 exp
 2â .
22
 

(


−
 1
 f(γ) â
 † 2â

† 
2

)


|0)(2) =
 0 . (5.15)
 â2 cosh γ + â † 2 sinh γ

)

exp


2
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The action of â2 can be replaced by a commutator since it kills the vacuum |0)(2): 

2 sinh γ exp †††1
 1
† †−
 −
cosh γ
 f(γ) â
 f(γ) â
 0 . (5.16)
 2â 2â =
 2 2

[ (

â2 , exp
2
 

)]


|0)(2) + â 
(


2
 

)


|0)(2) 

We can now apply the familiar [A, eB] = [A, B]eB (if [[A, B], B] = 0) to the evaluation of the 

commutator 

( [

cosh γ â2 , − f(γ) â
 † 2â

† 
2

]


+ â
 † 2 sinh γ

) (

exp † 
2

)


|0)(2) 
1
 1
 

f(γ) â
 † 2â
−
 =
 0 . (5.17)
 
2
 2
 

Evaluating the remaining commutator gives
 

( )

− cosh γ f(γ) + sinh γ â

(


−
 † 
2â


† 
2

)
1
† 
2 exp |0)(2) =
f(γ) â
 0 . (5.18)
 

2
 

Since no annihilation operators remain, the equality requires that the pre factor in parenthesis 

be zero. This determines the function f(γ): 

f(γ) = tanh γ , (5.19) 

and we therefore have 

(
 )
1
 † 

The normalization N is not determined by the above calculation. It is could be determined, for 

example, by the demand that the state on the right-hand side above have unit normalization, 

just like |0)(1) does. This is not a simple calculation. A simpler way uses the overlap of the two 

sides of the above equation with (2) 0|. We find 

(2) 0|0)(1) = N (γ) , (5.21) 

because on the right hand side we can expand the exponential and all oscillators give zero on 

†|0)(1) = N (γ) −
 |0)(2)tanh γ â
 (5.20)
 exp
 2â .
22
 

account of (2) 0|â† = 2 0. Introducing a complete set of position states we get:
 

∞∞ 
(2) (1) N (γ) = dx(2) 0|x) x|0)(1) = dx (ψ0 (x)) 

∗ ψ0 (x) . (5.22) 
−∞ −∞ 

Using the expression (1.39) for the ground state wavefunctions 

∞ 

−∞ 
√ 

dx exp

( [m1ω1 + m2ω2

] )

− x 2
2n 

,

(m1ω1

)1/4(m2ω2
)1/4

πn πn 
N (γ)
 =
 

√
 [ m1ω1m2ω2
]1/2 2πn (1 m1ω1 + m2ω2

)−1/2 

√ (5.23) 
πn m1ω1 + m2ω2 2 m1ω1m2ω2 

= √ = 

(1 [ m1ω1 m2ω2 
])−1/2 (1 [ γ −γ

])−1/2 

= + = e + e ,
2 m2ω2 m1ω1 2 
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so that we finally have
 
1 N (γ) = √ . (5.24) 

cosh γ 

All in all 

1 ( 1 )

√ † †|0)(1) = exp − tanh γ â2â2 |0)(2) . (5.25) 
cosh γ 2 

The state on the above right-hand side takes the form of an exponential of something quadratic 

in oscillators. It is a squeezed vacuum state of the second Hamiltonian. 

Inspired by the discussion above we introduce squeezed states for an arbitrary harmonic 

oscillator Hamiltonian H with vacuum |0), parameters (m, ω) and operators (a, a†). A a nor

malized squeezed vacuum state, denoted as |0γ), thus takes the form 

1 ( 1 )

|0γ) ≡ √ exp − tanh γ â†â† |0) . (5.26) 
cosh γ 2 

For this state we have 
)

â cosh γ + â † sinh γ |0γ) = 0 . (5.27) 

For this squeezed vacuum state the x uncertainty follows directly from (5.5): 

n−γΔx = e . (5.28) 
2mω 

The above squeezed vacuum state can in fact be expressed in terms of a unitary operator 

S(γ) acting on the vacuum. We claim that |0γ) defined above is actually 
( γ )

|0γ) = S(γ)|0) , with S(γ) = exp − (â †â† − ââ) . (5.29) 
2

This claim implies that the following nontrivial identity holds: 

( γ ) 1 ( 1 )

exp − (â †â† − ââ) |0) = √ exp − tanh γ â†â† |0) . (5.30) 
2 cosh γ 2 

This equation takes a little effort to prove, but it is true. 

5.2 More general squeezed states 

In the limit γ → +∞ the state in (5.26) is completely squeezed in the x coordinate. It takes 

the form ( 1 )

|0∞) ∼ exp − â†â† |0) , (5.31) 
2 

where we have dropped the normalization constant, which is actually going to zero. We see 

that (â + â†)|0∞) = 0 by direct (quick) computation or by consideration of (5.27). This means 
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that the x̂ operator kills this state. We conclude that the state must have a wavefunction 

proportional to δ(x). Alternatively, for γ → −∞ we have a state 
( 1 )

|0−∞) ∼ exp â†â† |0) , (5.32) 
2 

This state is annihilated by (â − â†), or equivalently, by the momentum operator. So it must be 

a state whose wavefunction in momentum space is δ(p) and in coordinate space is a constant! 

The right-hand side constructs the constant by superposition of Hermite polynomials times 

gaussians. 

The above suggest that position states |x) (and momentum states |p)) are squeezed states 
of the harmonic oscillator. Indeed, we can introduce the more general squeezed states 

( 2mω 1 )

|x) = N exp x â† − â†â† |0) . (5.33) 
n 2 

A short calculation (do it!) shows that, indeed, 

n 
x̂|x) = (â + â †)|x) = x|x) . (5.34) 

2mω 

The normalization constant is x dependent and is quickly determined by contracting (5.33) 

with the ground state 

( 2mω 1 )

0|x) = N 0| exp x â† − â†â† |0) = N . (5.35) 
n 2 

We thus conclude that the normalization constant is just the ground state wavefunction: N = 

ψ0(x). Using (1.42) we finally have 

(mω )1/4 ( mω ) ( 2mω 1 )

|x) = exp − x 2 exp x â† − â†â† |0) . (5.36) 
πn 2n n 2 

Rather general squeezed states are obtained as follows. Recall that for coherent states we 

used the operator D(α) (D for displacement!) acting on the vacuum 

D(α) = exp α â† − α ∗ â
)
, |α) = D(α)|0) . 

We can now introduce more general squeezed states |α, γ) by first squeezing and then translat
ing: 

|α, γ) ≡ D(α)S(γ)|0) . 

Note that |0, γ) = |0γ) and |α, 0) = |α). 
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5.3 Photon states 

For a classical electromagnetic field the energy E is obtained by adding the contributions of 

the electric and magnetic field: 

1 [ ]

E = d3x ǫ0 E�
2(�r, t) + c 2B� 2(�r, t) . (5.37) 

2 

We consider a rectangular cavity of volume V with a single mode of the electromagnetic field, 

namely, a single frequency ω and corresponding wavenumber k = ω/c. The electromagnetic 

fields form a standing wave in which electric and magnetic fields are out of phase. They can 

take the form 

2 
Ex(z, t) = 

V ǫ0 
ω q(t) sin kz , 

(5.38) 
2 

cBy(z, t) = 
V ǫ0 

p(t) cos kz , 

The classical time-dependent functions q(t) and p(t) are to become in the quantum theory 

Heisenberg operators q̂(t) and p̂(t) with commutation relations [q̂(t) , p̂(t) ] = in. A calculation 

of the energy E in (5.37) with the fields above gives6 

)
E = 

1 
p 2(t) + ω2 q 2(t) (5.39)

2 

There is some funny business here with units. The variables q(t) and p(t) do not have their 

familiar units, as you can see from the expression for the energy. Indeed one is missing a 

quantity with units of mass that divides the p2 contribution and multiplies the q2 contribution. √ √ 
One can see that p has units of E and q has units of T E. Still, the product of q and p has 

the units of n, which is useful. Since photons are massless particles there is no quantity with 

units of mass that we can use. Note that the dynamical variable q(t) is not a position, it is 

essentially the electric field. The dynamical variable p(t) is not a momentum, it is essentially 

the magnetic field. 

The quantum theory of this EM field uses the structure implied by the above classical 

results. From the energy above we are let to postulate a Hamiltonian 

1 2 2
)

H = p̂ + ω2 q̂ , (5.40) 
2 

with Schrödinger operators q̂ and p̂ (and associated Heisenberg operators q̂(t) and p̂(t)) that 

satisfy [q̂, p̂] = in. As soon as we declare that the classical variables q(t) and p(t) are to become 

operators, we have the implication that the electric and magnetic fields in (5.38) will become 

6If you wish to do the computation just recall that over the volume the average of sin2 kz or cos2 kz is 1/2. 
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field operators, that is to say, space and time-dependent operators (more below!). This oscillator 

is our familiar SHO, but with m set equal to one, which is allowed given the unusual units of 

q̂ and p̂. With the familiar (1.17) and m = 1 we have 

† â = √ 1 (ωq̂ + ip̂) , â = √ 1 (ωq̂ − ip̂) , [â , â†] = 1 . (5.41) 
2nω 2nω 

It follows that 

1 1 1) )
nω â†â = (ωq̂ − ip̂) (ωq̂ + ip̂) = p̂2 + ω2q̂2 + iω[q̂, p̂] = p̂2 + ω2q̂2 − nω (5.42)

2 2 2 

and comparing with (5.40) this gives the Hamiltonian 

( 1) 1ˆ†ˆH = nω â a + = nω N + 
)
. (5.43) 

2 2

This was the expected answer as this formula does not depend on m and thus our setting it to one 

should have no import. At this point we got photons! A quantum state of the electromagnetic 

field is a photon state, which is just a state of the harmonic oscillator Hamiltonian above. In 

the number basis the state |n) with number eigenvalue n, has energy nω(n + 1
2
) which is, up to 

the zero-point energy nω/2, the energy of n photons each of energy nω. 

For more intuition we now consider the electromagnetic field operator, focusing on the 

electric field operator. For this we first note that 

n 
q̂ = (â + â †) , (5.44) 

2ω 

and the corresponding Heisenberg operator is, using (3.53) and (3.54), 

n −iωt + ˆ† iωt)q̂(t) = (âe a e . (5.45) 
2ω 

In quantum field theory –which is what we are doing here– the electric field becomes a Hermitian 

operator. Its form is obtained by substituting (5.45) into (5.38): 

† iωt)Êx(z, t) = E0 ae ˆ −iωt + â e sin kz , E0 = 
nω

. (5.46) 
ǫ0V 

This is a field operator in the sense that it is an operator that depends on time and on space 

(z in this case). The constant E0 is sometimes called the electric field of a photon. 

A classical electric field can be identified as the expectation value of the electric field operator 

in the given photon state. We immediately see that in the energy eigenstate |n) the expectation 
value of Êx takes the form 

Êx(z, t)) = E0 n|â|n)e −iωt + n|â†|n)e iωt
)
sin kz = 0 , (5.47) 
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since the matrix elements on the right hand side are zero. Thus the energy eigenstates of the 

photon field do not correspond to classical electromagnetic fields. Consider now the expectation 

value of the field in a coherent state |α) with α ∈ C. This time we get 

Êx(z, t)) = E0 α|â|α)e −iωt + α|â†|α)e iωt
)
sin kz . (5.48) 

Since â|α) = α|α) we get 

Êx(z, t)) = E0 α e
−iωt + α ∗ e iωt

)
sin kz . (5.49) 

This now looks like a familiar standing wave! If we set α = |α|eiθ, we have 

Êx(z, t)) = 2E0 Re(αe
−iωt) sin kz = 2E0 |α| cos(ωt − θ) sin kz. (5.50) 

The coherent photon states are the ones that have a nice classical limit with classical electric 

fields. The standing wave in (5.50) corresponds to a state |α) where the expectation value of 

the number operator N̂ is |α|2 . This is the expected number of photons in the state. It follows 

that the expectation value of the energy is 

1 
H)α = nω |α|2 + nω . (5.51) 

2 

Up to the zero-point energy, the expected value of the energy is equal to the number of photons 

times nω. 
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