
8.05, Quantum Physics II, Fall 2013

TEST

Wednesday October 23, 12:30-2:00pm

You have 90 minutes.

Answer all problems in the white books provided. Write

YOUR NAME and YOUR SECTION on your white

book(s).

There are five questions, totalling 100 points.

None of the problems requires extensive algebra.

No books, notes, or calculators allowed.

TIME MANAGEMENT: I suggest 45 minutes for the

first three questions, 20 for question 4 and 25 for ques-

tion 5.
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Formula Sheet

• Conservation of probability

∂ ∂
ρ(x, t) +

∂t
J(x, t) = 0

∂x

~
ρ(x, t) = |ψ(x, t)|2 ; J(x, t) =

∂
ψ

2im

[

∗ ∂
ψ

∂x
− ψ ψ∗

∂x

]

• Variational principle:

Egs ≤
∫

dxψ∗(x)Hψ(x)
, for all ψ(x)∫

dxψ∗(x)ψ(x)

• Spin-1/2 particle:

e~
Stern-Gerlac : H = −~µ · ~h B , ~µ = g

2m

1 ~ ~S = γS
~

e~
µ

B
=

~S
, ~µe =

2me
−2µ

B
,

~

1 0
In the basis |1〉 ≡ |z; +〉 = |+〉 =

(

0

)

, |2〉 ≡ |z;−〉 = |−〉 =
(

1

)

~
Si =

0 1 0 1 0
σi σx = ; σy =

−i
; σz =

2

(

1 0

) (

i 0

) (

0 −1

)

[σi, σj] = 2iǫ ~ijkσk →
[

Si , Sj

]

= i ǫijkSk (ǫ123 = +1)

~ ~ ~σiσj = δijI + iǫijkσk → (~σ · ~a)(~σ · b) = ~a · b I + i~σ · (~a× b)

eiMθ = 1 cos θ + iM sin θ , if M2 = 1

( )

(~a
exp i~a · ~σ = 1 cos a + i~σ · ~

a

)

sin a , a = |a|

exp(iθσ3) σ1 exp(−iθσ3) = σ1 cos(2θ)− σ2 sin(2θ)
exp(iθσ3) σ2 exp(−iθσ3) = σ2 cos(2θ) + σ1 sin(2θ) .

~
S~n = ~n · ~S = nxSx + nySy + nzSz = ~n · ~σ .

2
~

(nx, ny, nz) = (sin θ cosφ, sin θ sinφ, cos θ) , S~n |~n;±〉 = ± ~
2
|n;±〉

|~n; +〉 = cos(θ/2)|+〉 + sin(θ/2) exp(iφ)|−〉

|~n;−〉 = − sin(θ/2) exp(−iφ)|+〉 + cos(θ/2)|−〉
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• Bras and kets: For an operator Ω and a vector v, we write |Ωv〉 ≡ Ω|v〉

Adjoint: 〈u|Ω†v〉 = 〈Ωu|v〉

|α1v1 + α2v
∗

2〉 ∗
2〉 = α1|v1〉+ α2|v ←→ 〈α1v1 + α2v2| = α1〈v1|+ α2〈v2|

• Complete orthonormal basis |i〉

〈i|j〉 = δij , 1 =
∑

i

|i〉〈i|

Ωij = 〈i|Ω|j〉 ↔ Ω =
∑

Ωij i j
i,j

| 〉〈 |

〈i|Ω†|j〉 = 〈j|Ω|i〉∗

Ω hermitian: Ω† = Ω, U unitary: U † = U−1

• Matrix M is normal ([M,M †] = 0) ←→ unitarily diagonalizable.

• Position and momentum representations: ψ(x) = 〈 ˜x|ψ〉 ; ψ(p) = 〈p|ψ〉 ;

x̂|x〉 = x|x〉 , 〈x|y〉 = δ(x− y) , 1 =

∫

dx |x〉〈x| , x̂† = x̂

p̂|p〉 = p|p〉 , 〈q|p〉 = δ(q − p) , 1 =

∫

dp |p〉〈p| , p̂† = p̂

1〈x|p〉 = √
2π~

exp
( ipx

~

)

; ψ̃(p) =

∫

dx〈p|x〉〈x|ψ〉 = 1√
2π~

∫

dx exp
(

−ipx ψ
~

)

(x)

〈x|p̂n|ψ〉 =
(

~

i

d

dx

)n

ψ(x) ; 〈p|x̂n|ψ〉 =
(

i~
d

dp

)n

ψ̃(p) ; [p̂, f(x̂)] =
~
f ′(x̂)
i

1
x

2

∫ ∞

exp(ik )dx = δ(k)
π −∞

• Generalized uncertainty principle

(∆A)2 ≡ 〈(A− 〈A〉)2〉 = 〈A2〉 − 〈A〉2

(∆A)2
1

(∆B)2 ≥
(

〈Ψ|
2

[A,B]
2i

|Ψ〉
)

~
∆x∆p ≥

2

∆
∆x = √

2
and ∆p =

~√
2∆

for a gaussian wavefuntion ψ ∼ exp
(

−1
2

x2

∆2

)

∫ +∞

dx exp
−∞

(

−ax2
)

=

√

π

a
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d
Time independent operator Q :

i
Q

dt
〈 〉 = [

~
〈 H,Q]〉

~
∆H∆t ≥

2
, ∆t ≡ ∆Q

∣

d〈Q〉
∣

dt

∣

∣

• Commutator identities

[A,BC] = [A,B]C +B[A,C] ,

eABe−A 1
= B + [A,B] +

1
[A, [A,B]] +

2
[A, [A, [A,B]]] + . . . ,

3!

eABe−A = B + [A,B] , if [[A,B], A] = 0 ,

[B , eA ] = [B ,A ]eA , if [[A,B], A] = 0

eA+B = eAeBe−
1

2
[A,B] = eBeAe

1

2
[A,B] , if [A,B] commutes with A and with B

• Harmonic Oscillator

1
Ĥ =

1
p̂2 +

2m 2
mω2x̂2 = ~ω

(

N̂ +
1

,
2

)

N̂ = â†â

â =

√

mω

2~

(

x̂+
ip̂

mω

)

, â† =

√

mω

2~

(

x̂− ip̂
,

mω

)

x̂ =

√

~

2mω
(â + â†) , p̂ = i

√

mω~
(â† − â) ,

2

†
~ ˆ ˆ[x̂, p̂] = i , [â, â ] = 1 , [N, â ] = −â , [N , â† ] = â† .

1|n〉 = √ (a†)n
n!

|0〉

Ĥ|n〉 = En|n〉 = ~ω
( 1
n+ n

2

)

| 〉 , N̂ |n〉 = n|n〉 , 〈m|n〉 = δmn

â†|n〉 =
√
n+ 1|n+ 1〉 , â|n〉 =

√
n|n− 1〉 .

ψ0(x) = 〈x|0〉 =
(mω

π~

)1/4

exp
(

−mωx2
2~

)

.

• Unitary time evolution

|Ψ, t〉 = exp
( iHt−

~

)

|Ψ, 0〉 , for time-independent H
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1. True or false questions [20 points] No explanations required. Just indicate T or F

for true or false, respectively.

(1) A state for which the uncertainty ∆Q of an observable Q vanishes must be an

eigenstate of Q.

(2) The uncertainty ∆S of a time-independent operator S is time independent.

(3) For any integerN ≥ 2, there existN×N matricesX and P such that [X,P ] = i~1.

(4) When two hermitian operators Q1 and Q2 commute, any eigenvector of Q1 is an

eigenvector of Q2.

The following questions assume a finite-dimensional complex vector space V .

(5) The matrix representation of the identity operator is basis dependent.

(6) The eigenvalues of an operator are basis independent.

(7) The matrices for the operator Q and its adjoint Q† are related by complex con-

jugation and transposition in all bases.

(8) An orthogonal projector (to a lower dimensional subspace) is neither injective nor

surjective in V .

(9) Any set of orthonormal vectors is linearly independent.

(10) An operator that is both unitary and hermitian must square to the identity.
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2. A scaling operator [15 points]

Consider the operator
λ

Uλ ≡ xp
[ i

e − (x̂p̂+ p̂x̂)
2~

]

.

(a) What is the condition on the constant λ given that Uλ is in fact unitary? Explain.

(b) Determine the action of Uλ on the operator x̂, namely, give the right-hand side of

the equation

U †
λ x̂ Uλ = . . . .

(c) Give an expression for U †
λ p̂ Uλ consistent with your above result and the commu-

tator [x̂, p̂] = i~. Does Uλ commute with the Hamiltonian of a free particle in one

dimension?

3. A property of complex vector spaces [15 points]

Consider two vectors |u〉 and |v〉 in a complex vector space V

(a) Simplify the following expression

1
+

4

[

〈u+ v , u v〉 − 〈 u− v , u− v〉 + i 〈 u− iv , u− iv〉 − i 〈 u+ iv , u+ iv〉
]

.

Use your answer to state a formula for the inner product of any two vectors in

terms of norms of related vectors. Recall that |v|2 ≡ 〈v, v〉. Explain why your

result ensures that a linear operator S that preserves the norm of any vector, will

preserve the inner-product of any two vectors 〈Su, Sv〉 = 〈u, v〉.
(b) Assume that we have a vector space where the inner product arises from a norm,

as found in (a). The norm, as usual, is assumed to satisfy |αu| = |α||u|, for any
complex constant α. Show that the familiar property 〈v, u〉 = 〈u, v〉∗ holds.
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4. Variational principle [25 points]

ˆ 2

This problem refers to a Hamiltonian H = p̂ + V (x̂) for a one-dimensional system
2m

and taking the form

p̂2
Ĥ =

m ω2

+ ~ω
2m

−
2

x̂2 +
m2ω3

x̂4
16 ~

p̂2
=

m2ω3

+
2m 16 ~

(

x̂2 − 4~
0

m

)2

, ω > .
ω

Note here the natural length scale d0 given by

~
d20 = .

mω

(a) Sketch the potential V (x) for this Hamiltonian indicating precisely the position

and values at local maxima and minima.

(b) For the variational trial wavefunction

2

ψ x) = x e−
x

( 22λ

the expectation value of the energy in this state is given by

3
E(λ) = ~ω −

4
mω2 λ2 + Aλ4 +

3~2

4m

1
.

λ2

Complete the calculation be computing the constant A in terms of ~, m, and ω.

We computed for you the expectation value of the kinetic energy (last term), and

part of the expectation value of the potential (don’t recalculate them!)

(c) To clean up units, set λ2 = d20 η
2, where η is unit-free and d0 was defined above.

Write now E as a function of η by including the missing term indicated by dots:

3
E(η) = ~ω

(

1−
4
η2 + . . .+

3

4

1
.

η2

)

Find the value of η that minimizes E(η), ignoring the last term. Use this value

to find an upper bound E∗ on the energy of the ground state. Explain your logic.

(d) The energy E∗ in fact provides a more stringent bound on the energy of another

energy eigenstate of the system. Which state and why?

The following integrals may be useful:

∫ ∞

u2ne−u2

du = cn
√

−∞

π , with c0 = 1 , c1 =
1

2
, c2 =

3

4
, c3 =

15

8
.
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5. Spin states and uncertainty [25 points]

ˆ ˆ(a) Derive an uncertainty relation for the Sx and Sy operators. That is, given a state

|ψ〉, demonstrate an inequality of the form

ˆ(∆S ˆ
x)(∆Sy) ≥ . . . ,

where the right-hand side is a function of |ψ〉.
ˆ ˆ(b) What is the minimum possible value of the product ∆Sx∆Sy? For which states

|ψ〉 is this minimum achieved?

(c) What is the maximum possible value of ∆Ŝi, for any i = 1, 2, 3? Explain.

(d) Consider a general spin state |n; +〉 described in terms of the angles θ and φ.
ˆ ˆ ˆCalculate ∆Sx, ∆Sy and ∆Sz. Based on your result, what are the states that

Ŝ Ŝmaximize the product ∆ x∆ y? Explain.
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