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1 Algebraic Solution of the Oscillator

We have already seen how to calculate energy eigenstates for the simple harmonic oscillator by solving

a second-order differential equation, the time-independent Schrödinger equation.

Let us now try to factorize the harmonic oscillator Hamiltonian. By this we mean, roughly, writing

the Hamiltonian as the product of an operator times its Hermitian conjugate. As a first step we rewrite

the Hamiltonian as

Ĥ = 1
p̂2

2
mω2

(

x̂2 +
2

)

. .
ω2

(1 1)
m

Motivated by the identity a2 + b2 = (a − ib)(a + ib), holding for numbers a and b, we examine if the

expression in parenthesis can be written as a product

(
ip̂

)(
ip̂

)

2 p̂2 i
x̂− x̂+ = x̂ + xp

mω mω m2
+ ˆˆ p̂x̂) ,

ω2 mω

(
−

(1.2)
2

~
= x̂2

p̂
+

2
− 1 ,

m2ω mω

where the extra terms arise because x̂ and p̂, as opposed to numbers, do not commute. We now define

the right-most factor in the above product to be V :

ip̂
V ≡ x̂+ , (1.3)

mω

Since x̂ and p̂ are Hermitian operators, we then have

† ip̂
V = x̂− , (1.4)

mω

and this is the left-most factor in the product! We can therefore rewrite (1.2) as

2 p̂2 ~
x̂ + V ,

2 2
= †V + 1 (1.5)

m ω mω

and therefore back in the Hamiltonian (1.1) we find,

Ĥ = 1

2
mω2 V †V + 1

~
2
ω1 . (1.6)
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ˆThis is a factorized form of the Hamiltonian: up to an additive constant E0, H is the product of a

positive constant times the operator product V †V . We note that the commutator of V and V † is

simple
[

†
] [ ip̂ ip̂ i i 2~

V , V = x̂+ , x̂−
]

= − [x̂ , p̂] + [p̂, x̂] = 1 . (1.7)
mω mω mω mω mω

This implies that
[√

mω
V ,

√
mω

V †

]

= 1 . (1.8)
2~ 2~

This suggests the definition of unit-free operator operators â and â†:
√
mω

â ≡ V ,
2~

â† ≡
√ (1.9)
mω

V † .
2~

Due to the scaling we have
[
â , â†

]
= 1 . (1.10)

The operator â is called annihilation operator and â† is called a creation operator. The justification

for these names will be seen below. From the above definitions we read the relations between (a,ˆ â†)

and (x̂ , p̂):

i
ˆ =

√
mω

(
p̂

a x̂+
2~ mω

)

,

â† =

√ (1.11)
mω

(
ip̂

x̂− .
2~ mω

)

The inverse relations are many times useful as well,

x̂ =

√

~
(â+ â†) ,

2mω
√ (1.12)
mω~

p̂ = i (â† a) .
2

− ˆ

While neither â nor â† is hermitian (they are hermitian conjugates of each other), the above equations

are consistent with the hermiticity of x̂ and p̂. We can now write the Hamiltonian in terms of the â

and â† operators. Using (1.9) we have

V † 2~
V = â†â , (1.13)

mω

and therefore back in (1.6) we get

Ĥ = ω
(
â†â+ 1

)
= ω

(
N̂ + 1

)
, N̂ ≡ â†~ ~

2 2
â . (1.14)

ˆThe above form of the Hamiltonian is factorized: up to an additive constant H is the product of a

positive constant times the operator product â†â. In here we have dropped the identity operator, which
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ˆis usually understood. We have also introduced the number operator N . This is, by construction, a

hermitian operator and it is, up to a scale and an additive constant, equal to the Hamiltonian. An

Ĥ ˆeigenstate of is also an eigenstate of N and it follows from the above relation that the respective

eigenvalues E and N are related by

E = ~ω
(

N + 1

2

)

. (1.15)

Let us now show the powerful conclusions that arise from the factorized Hamiltonian. On any

state ψ that is normalized we have

〈Ĥ〉ψ =
(
ψ, Ĥψ

)
= ~ω

(
ψ, â†aψˆ

)
+ 1

~
2
ω
(
ψ,ψ

)
, (1.16)

and moving the â† to the first input, we get

〈Ĥ〉ψ = ~ω
(
aψˆ , âψ

)
+ 1

~
2
ω ≥ 1

~
2
ω . (1.17)

The inequality follows because any expression of the form (ϕ,ϕ) is greater than or equal to zero. This
ˆshows that for any energy eigenstate with energy E: Hψ = Eψ we have

Energy eigenstates: E ≥ 1
~

2
ω . (1.18)

This important result about the spectrum followed directly from the factorization of the Hamiltonian.

But we also get the information required to find the ground state wavefunction. The minimum energy
1
~

2
ω will be realized for a state ψ if the term

(
aψˆ , aψˆ in (1.17) vanishes. For this to vanish aψˆ must

vanish. Therefore, the ground state wavefunction ϕ0 m

)

ust satisfy

â ϕ0 = 0 . (1.19)

The operator â annihilates the ground state and this why â is called the annihilation operator. Using

the definition of â in (1.11) and the position space representation of p̂, this becomes

(
i ~ d d

x+

)
~

ϕ0(x) = 0 →
(

x+

)

ϕ0(x) = 0 . (1.20)
mω i dx mω dx

Remarkably, this is a first order differential equation for the ground state. Not a second order

equation, like the Schrödinger equation that determines the general energy eigenstates. This is a

dramatic simplification afforded by the factorization of the Hamiltonian into a product of first-order

differential operators. The above equation is rearranged as

dϕ0 mω
=

dx
− xϕ0 . (1.21)

~

Solving this differential equation yields

ω

ϕ (x) =
(mω)

1

4 m

e− 2~
x2

0 , (1.22)
π~

where we included a normalization constant to guarantee that (ϕ0, ϕ0) = 1. Note that ϕ0 is indeed

an energy eigenstate with energy E0:

Ĥϕ0 = ~ω
(
â†â+ 1

)
ϕ0 = 1

~ωϕ0 → E 1
~02 2

=
2
ω . (1.23)
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Before proceeding with the analysis of excited states, let us view the properties of factorization
ˆmore generally. Factorizing a Hamiltonian means finding an operator A such that we can rewrite the

ˆ ˆHamiltonian as A†A ˆup to an additive constant. Here A† is the Hermitian conjugate of A, an operator

that is defined by
(
ψ, Â†ϕ) =

(
Âψ , ϕ

)
. (1.24)

ˆ ˆWe say that we have factorized a Hamiltonian H if we can find a A for which

Ĥ ˆ= A†Â + E0 1 , (1.25)

where E0 is a constant with units of energy that multiplies the identity operator. This constant

does not complicate our task of finding the eigenstates of the Hamiltonian, nor their energies: any
ˆ ˆ ˆeigenfunction of A†A is an eigenfunction of H. Two key properties follow from the factorization (1.25).

1. Any energy eigenstate must have energy greater than or equal to E0. First note that for an

arbitrary normalized ψ(x) we have

(
ψ , Ĥψ

)
=

(
ψ , Â†Â ψ

)
+ E0

(
ψ ,ψ

)
=

(
Âψ , Âψ

)
+ E0 , (1.26)

ˆSince the overlap (Aψ, Âψ) is greater than or equal to zero, we have shown that

(
ψ , Ĥψ

)
≥ E0 . (1.27)

If we take ψ ˆto be an energy eigenstate of energy E: Hψ = Eψ, the above relation gives

E ≥ E0 . (1.28)

This shows, as claimed, that all possible energies are greater than or equal to E0.

2. A wavefunction ψ0 that satisfies

Â ψ0 = 0 , (1.29)

is an energy eigenstate that saturates the inequality (1.28). Indeed,

Ĥψ †
0 Â† ˆ= Aψ0 + E0ψ0

ˆ= A ˆ(Aψ0) + E0ψ0 = E0ψ0 . (1.30)

The state ψ0
ˆsatisfying Aψ0 = 0 is the ground state. For conventional Hamiltonians this is a

first order differential equation for ψ0 and much easier to solve than the Schrödinger equation.

2 Operator manipulation and the spectrum

ˆWe have seen that all energy eigenstates are eigenstates of the Hermitian number operator N = â†â.
ˆThis is because H = ~ω ˆ(N + 1

2
). Note that since aϕˆ 0 = 0 we also have

N̂ϕ0 = 0 . (2.1)
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We can quickly check that

[
N̂ , â

]
=

[
â†a,ˆ â] =

[
â†, â] â = −â ,

[
N̂ , â†

]
=

[ (2.2)
â†a,ˆ â†] = â†

[
a,ˆ â†] = â† ,

which we summarize as
[
N̂ , â

]
= − â ,

[
N̂ , â†

] (2.3)
= â† .

Using these identities and induction you should be able to show that:

[
N̂ , (â)k = −k (â)k ,

[ (2.4)
N̂ , (â†)k

]

]
= k (â†)k.

ˆThese relations suggest why N is called the number operator. Acting on powers of creation or anni-

hilation operators by commutation it gives the same object multiplied by (plus or minus) the number

of creation or annihilation operators, k in the above. Closely related commutators are also useful:

[
â† , (â)k = −k (â)k−1

[ (2.5)
â , (â†)k

]

]
= k (â†)k−1.

These commutators are analogous to [p̂, (x̂)k] and [x̂, (p̂)k]. We will also make use of the following
ˆLemma which helps in evaluations where we have an operator A that kills a state ψ and we aim to

ˆ ˆ ˆsimplify the action of AB, where B is another operator, acting on ψ. Here is the result

ˆIf Aψ = 0 , ˆ ˆ ˆ ˆthen AB ψ =
[
A , B

]
ψ . (2.6)

This is easily proved. First note that

ÂB̂ ˆ ˆ= [A,B ˆ] +BÂ , (2.7)

as can be quickly checked expanding the right-hand side. It then follows that

Â B̂ ψ =
(

ˆ[A, B̂ ˆ] +BÂ
)
ψ =

[
Â , B̂

]
ψ , (2.8)

ˆbecause BÂψ B̂ ˆ= (Aψ) = 0. This is what we wanted to show. This is all we need to know about

commutators and we can now proceed to construct the states of the harmonic oscillator.

Since â annihilates ϕ0 consider acting on the ground state with â†. It is clear that â† cannot also

annihilate ϕ0. If that would happen acting with both sides of the commutator identity [â , â†] = 1 on

ϕ0 would lead to a contradiction: the left-hand side would vanish but the right-hand side would not.

Thus consider the wavefunction

ϕ1 ≡ â†ϕ0 . (2.9)

We are going to show that this is an energy eigenstate. For this purpose we act on it with the number

operator:

N̂ϕ1
ˆ= Na N̂ˆ†ϕ0 = [ , â†]ϕ0 , (2.10)
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N̂where we noted that ϕ0
ˆ= 0 and used Lemma (2.6). Given that [N, â†] = â†, we get

N̂ϕ †
1 = â ϕ0 = ϕ1. (2.11)

ˆ ˆThus ϕ1 is an eigenstate of the operator N with eigenvalue N = 1. Since ϕ0 has N eigenvalue zero,

the effect of acting on ϕ0 with â† was to increase the eigenvalue of the number operator by one unit.

The operator â† is called the creation operator because it creates a state out of the ground state.

Alternatively, it is called the raising ˆoperator, because it raises (by one unit) the eigenvalue of N .

Since N = 1 for ϕ1 it follows that ϕ1 is an energy eigenstate with energy E1 given by

E1 = ~ω(1 + 1 3
~

2
) =

2
ω. (2.12)

It also turns out that ϕ1 is properly normalized:

(ϕ1, ϕ1) = (â†ϕ † †
0, â ϕ0) = (ϕ0, ââ ϕ0) , (2.13)

where we used the Hermitian conjugation property to move the â† acting on the left input into the

right input, where it goes as (â†)† = â. We then have

(ϕ1, ϕ1) = (ϕ †
0, ââ ϕ0) = (ϕ0, [a,ˆ â†]ϕ0) = (ϕ0, ϕ0) = 1, (2.14)

where we used (2.6) in the evaluation of ââ†ψ0. Indeed the state ϕ1 is correctly normalized.

Next consider the state

ϕ′ ≡ â†â†2 ϕ0. (2.15)

This has

N̂ϕ′ N̂ †
2 = â â†ϕ0 =

[

N̂ , â†â†
]

ϕ †
0 = 2â â†ϕ0 = 2ϕ′

2 , (2.16)

so ϕ2 is a state with number N = 2 and energy E2 =
5
~

2
ω. Is it properly normalized? We find

(
ϕ2, ϕ2

)
= â†â†ϕ0, â

†â†ϕ = ϕ , âââ†â† a,ˆ †
0 0 ϕ0 = ϕ0, â â â† ϕ0

(2.17)
=

( )

(
ϕ0, 2ââ

†ϕ0

)
=

(
ϕ0,

(

ϕ0

)
= 2 .

) ( [ ] )

The properly normalized wavefunction is therefore

1
ϕ2 ≡ √ â†â†ϕ0 . (2.18)

2

We now claim that the n-th excited state of the simple harmonic oscillator is

1 1
ϕn ≡ √ â† · · · n

â† ϕ =
n

√
︸ ︷

n

(
â†

!

)
ϕ . (2.19)

︷ ︸ 0 0
n!

Exercise: ˆVerify that this state has N eigenvalue n.

Exercise: Verify that the state ϕn is properly normalized.
ˆSince the N eigenvalue of ϕ is n, its energy En is given by

En = ~ω(n+ 1

2
) . (2.20)

6



ˆSince the various states ϕn are eigenstates of a Hermitian operator (the Hamiltonian H) with different

eigenvalues, they are orthonormal

ϕn , ϕm ) = δm,n . (2.21)

We now note that aϕˆ n is a state with

(

n− 1 operators â† acting on ϕ0 because the â eliminates one

of the creation operators in ϕn. Thus we expect aϕˆ n ∼ ϕn−1. We can make this precise

1 1
â ϕn = â√

( n
â†
)n n
ϕ0 = ϕ

n
√
n!

[
â ,

(
â†
) ]

0 =
!

√
n!

( 1
ˆ†

−
a
)n

ϕ0 . (2.22)

At this point we use (2.19) with n set equal to n− 1 and thus get

n
â ϕn = √

√

(n− 1)!ϕn−1 =
√
nϕn−1 . (2.23)

n!

By the action of â† on ϕn we get

â†
1

ϕ = √ (â†)n+1 1
n ϕ0 = √

√

(n + 1)!ϕn+1 =
√
n+ 1ϕn+1. (2.24)

n! n!

Collecting the results, we have

â ϕn =
√
nϕn−1 ,

â†ϕn =
√ (2.25)
n+ 1ϕn+1 .

These relations make it clear that â lowers the number of any energy eigenstate by one unit, except

for the vacuum ϕ0 which it kills. The raising operator â† increases the number of any eigenstate by

one unit.

Exercise: Calculate the uncertainty ∆x of position in the n-th energy eigenstate.

Solution: By definition,

(∆x)2n = 〈x̂2〉ϕn
− 〈x̂〉2ϕn

. (2.26)

The expectation value 〈x̂〉 vanishes for any energy eigenstate since we are integrating x, which is odd,

against |ϕn(x)|2, which is always even. Still, it is instructive to see how this happens explicitly:

〈x̂〉ϕn
=

( ~
ϕ †
n , x̂ϕn

)
=

√
(
ϕn , (â+ â )ϕn

)
, (2.27)

2mω

using the formula for x̂ in terms of â and â†. The above overlap vanishes because aϕˆ n ∼ ϕn−1 and

â†ϕn ∼ ϕn+1 and both ϕn−1 and ϕn+1 are orthogonal to ϕn. Now we compute the expectation value

of x̂2

~〈x̂2〉ϕn
=

(
ϕn , x̂

2ϕn
)

=
(
ϕn , (â+ â†)(â+ â†)ϕn

2mω

)

(2.28)
~

=
(
ϕn , (ââ+ ââ† + â†â+ â†â†)ϕn .

2mω

)

Since âaϕˆ n ∼ ϕn−2 and â†â†ϕn ∼ ϕn+2 and both ϕn−2 and ϕn+2 are orthogonal to ϕn, the ââ and

â†â† terms do not contribute. We are left with

~〈x̂2〉ϕn
=

(
ϕn , (ââ

† + â†â)ϕn
2mω

)
. (2.29)
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ˆ ˆAt this point we recognize that â†â = N and that ââ† = [â , â†] + â†â = 1 +N . As a result

~〈x2〉
( ~
ϕ , N̂ˆ ϕn

= n (1 + 2 )ϕn
)

= (1 + 2n) . (2.30)
2mω 2mω

We therefore have
~

(∆x)2n =
(
n+ 1

2

)
. (2.31)

mω

The position uncertainty grows linearly with the number.

Sarah Geller and Andrew Turner transcribed Zwiebach’s handwritten notes to create the first LaTeX

version of this document.
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