
Lecture 10: Solving the Time-Independent Schrödinger Equation

B. Zwiebach

March 14, 2016

Contents

1 Stationary States 1

2 Solving for Energy Eigenstates 3

3 Free particle on a circle. 6

1 Stationary States

Consider the Schrödinger equation for the wavefunction Ψ(x, t) with the assumption that the potential

energy V is time independent:

∂Ψ ~2 ∂2

i~ ˆ= HΨ(x, t) =
∂t

(
� + V (x) Ψ(x, t) , (1.1)

2m ∂x2

)
ˆwhere we displayed the form of the Hamiltonian operator H with the time independent potential

V (x). Stationary states are a very useful class of solutions of this differential equation. The signature

property of a stationary state is that the position and the time dependence of the wavefunction

factorize. Namely,

Ψ(x , t) = g(t)ψ(x) , (1.2)

for some functions g and ψ. For such a separable solution to exist we need the potential to be time

independent, as we will see below. The solution Ψ(x, t) is time-dependent but it is called stationary

because of a property of observables. The expectation value of observables with no explicit time

dependence in arbitrary states has time dependence. On a stationary state they do not have time

dependence, as we will demonstrate.

Let us use the ansatz (1.2) for Ψ in the Schrödinger equation. We then find(
dg(t) ˆi~

)
ψ(x) = g(t)Hψ(x) , (1.3)

dt

ˆbecause g(t) can be moved across H. We can then divide this equation by Ψ(x, t) = g(t)ψ(x), giving

1 dg(t) 1
i~ ˆ= Hψ(x) . (1.4)
g(t) dt ψ(x)

The left side is a function of only t, while the right side is a function of only x (a time dependent

potential would have spoiled this). The only way the two sides can equal each other for all values of t
ˆand x is for both sides to be equal to a constant E with units of energy because H has units of energy.

We therefore get two separate equations. The first reads

dg
i~ = Eg . (1.5)
dt

1

−



This is solved by

g(t) = e�iEt/~ , (1.6)

and the most general solution is simply a constant times the above right-hand side. From the x-

dependent side of the equality we get

Ĥψ(x) = Eψ(x) . (1.7)

ˆThis equation is an eigenvalue equation for the Hermitian operator H. We showed that the eigenvalues

of Hermitian operators must be real, thus the constant E must be real. The equation above is called

the time-independent Schrödinger equation. More explicitly it reads(
~2 d2

� + V (x)

)
ψ(x) = Eψ(x) , (1.8)

2m dx2

Note that this equation does not determine the overall normalization of ψ. Therefore we can write

the full solution without loss of generality using the g(t) given above:

~ ˆStationary state: Ψ(x, t) = e�iEt/ ψ(x) , with E 2 R and Hψ = Eψ . (1.9)

ˆNote that not only is ψ(x) an eigenstate of the Hamiltonian operator H, the full stationary state is
ˆalso an H eigenstate

ĤΨ(x, t) = EΨ(x, t) , (1.10)

since the time dependent function in Ψ cancels out.

We have noted that the energy E must be real. If it was not we would also have trouble normalizing

the stationary state consisten∫ tly. The normalization condition for Ψ, if E is not real, would give

~1 = dx Ψ�
∗ ~(x, t)Ψ(x, t) =

∫
dx eiE t/ e�iEt/ ψ�(x)ψ(x)

(1.11)

= ei(E
∗�E)t/~

∫
dx ψ� ~(x)ψ(x) = e2 Im(E)t/ dx ψ�(x)ψ(x).

The final expression has a time dependence due to the exponential.

∫
On the other hand the normal-

ization condition states that this expression must be equal to one. It follows that the exponent must

be zero, i.e., E is real. Given this, we also see that the normalization condition yields∫ 1
dx ψ�(x)ψ(x) = 1 . (1.12)

�1

ˆHow do we interpret the eigenvalue E? Using (1.10) we see that the expectation value of H on the

state Ψ is indeed the energy

h ˆ i
∫

� ˆH Ψ = dx Ψ (x, t)HΨ(x, t) =

∫
dxΨ�(x, t)EΨ(x, t) = E

∫
dxΨ�(x, t)Ψ(x, t) = E, (1.13)

ˆ ˆSince the stationary state is an eigenstate of H, the uncertainty ∆H of the Hamiltonian in a stationary

state is zero.

There are two important observations on stationary states:
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ˆ(1) The expectation value of any time-independent operator Q on a stationary state Ψ is time-

independent:

hQi ˆ=

∫
dx Ψ�(x, t)QΨ(x, t) =

∫
dx eiEt/~Ψ(x,t) ψ� ˆ(x)Qe�iEt/~ψ(x)∫ (1.14)

iEt/~ �iEt/~ � ˆ
∫

� ˆ= dx e e ψ (x)Qψ(x) = dx ψ (x)Qψ(x) = hQiψ(x) ,

since the last expectation value is manifestly time independent.

(2) The superposition of stationary states with different energies not stationary. This is clear because

a stationary state requires a factorized solution of the Schrödinger equation: if we add two

factorized solutions with different energies they will have different time dependence and the
ˆtotal state cannot be factorized. We now show that that a time-independent observable Q may

have a time-dependent expectation values in such a state. Consider a superposition

~ ~Ψ(x, t) = c e�iE1t/ ψ1(x) + c2e
�iE2t/

1 ψ2(x), (1.15)

ˆwhere ψ1 and ψ2 are H eigenstates with energies E1 and E2, respectively. Consider a Hermitian
ˆoperator Q. With the system in state (1.15), its expectation value is

hQiΨ =

∫ 1
dx Ψ� ˆ(x, t)QΨ(x, t)∫�11 ( � iE1t/~ � � iE2t/~ � )( �iE1t/~ ˆ ~ ˆ= dx c1e ψ1(x) + c2e ψ2(x) c1e Qψ1(x) + c iE

2e
� 2t/ Qψ2(x)∫�11 (

j j2 � ˆ j j2 � ˆ � ~ ˆ ~ ˆ= dx c1 ψ1Qψ1 + c2 ψ2Qψ2 + c1c2e
i(E1�E2)t/ ψ�Qψ + c�c e�i(E1

)
1 2

�E2)t/
2 1 ψ2

�Qψ1
�1

(1.16)

)
We now see the possible time dependence arising from the cross terms. The first two terms are

ˆsimple time-independent expectation values. Using the hermitically of Q in the last term we

then get

hQiΨ = jc1j2hQi 2
ψ1 + jc2j hQiψ2

(1.17)
+ c�1c2e

i(E1

1 1
�E2)t/~

∫
ˆdx ψ1
�Qψ2 + c1c

�
2e
�i(E1�E2)t/~

�1

∫
ˆdx ψ1(Qψ2)�

�1

The last two terms are complex conjugates of each other and therefore

1
hQiΨ = jc1j2hQiψ1 + jc2j2hQiψ2 + 2 Re

[
c� ~ ˆ

1c e
i(E1�E2)t/

2

∫
dx ψ1

�Qψ2

]
. (1.18)

�1

We see that this expectation value is time-dependent if E1 = E2 and (ψ1, Qψ2) is nonzero. The

full expectation value hQiΨ is real, as it must be for any Hermitian operator.

2 Solving for Energy Eigenstates

We will now study solutions to the time-independent Schrödinger equation

Ĥψ(x) = E ψ(x). (2.19)
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ˆFor a given Hamiltonian H we are interested in finding the eigenstates ψ and the eigenvalues E,

which happen to be the corresponding energies. Perhaps the most interesting feature of the above

equation is that generally the value of E cannot be arbitrary. Just like finite size matrices have a set

of eigenvalues, the above, time-independent Schrödinger equation may have a discrete set of possible

energies. A continuous set of possible energies is also allowed and sometimes important. There are

indeed many solutions for any given potential. Assuming for convenience that the eigenstates and

their energies can be counted we write

ψ1(x) , E1

ψ2(x) , E2 (2.20)
. .. .. .

Our earlier discussion of Hermitian operators applies here. The energy eigenstates can be organized

to form a complete set of orthonormal functions:∫
ψi
�(x)ψj(x) = δij . (2.21)

Consider the time-independent Schrödinger equation written as

d2ψ 2m
= � (E V

dx2 ~2
� (x))ψ . (2.22)

The solutions ψ(x) depend on the properties of the potential V (x). It is hard to make general state-

ments about the wavefunction unless we restrict the types of potentials. We will certainly consider

continuous potentials. We also consider potentials that are not continuous but are piece-wise contin-

uous, that is, they have a number of discontinuities. Our potentials can easily fail to be bounded.

We allow delta functions in one-dimensional potentials but do not consider powers or derivatives of

delta functions. We allow for potentials that become plus infinity beyond certain points. These points

represent hard walls.

We want to understand general properties of ψ and the behavior of ψ at points where the potential

V (x) may have discontinuities or other singularities. We claim: we must have a continuous

wavefunction. If ψ is discontinuous then ψ0 contains delta-functions and ψ00 in the above left-hand

side contains derivatives of delta functions. This would require the right-hand side to have derivatives

of delta functions, and those would have to appear in the potential. Since we have declared that our

potentials contain no derivatives of delta functions we must indeed have a continuous ψ.

Consider now four possibilities concerning the potential:

(1) V (x) is continuous. In this case the continuity of ψ(x) and (2.22) imply ψ00 is also continuous.

This requires ψ0 continuous.

(2) V (x) has finite discontinuities. In this case ψ00 has finite discontinuities: it includes the product of

a continuous ψ against a discontinuous V . But then ψ0 must be continuous, with non-continuous

derivative.

(3) V (x) contains delta functions. In this case ψ00 also contains delta functions: it is proportional

to the product of a continuous ψ and a delta function in V . Thus ψ0 has finite discontinuities.
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(4) V (x) contains a hard wall. A potential that is finite immediately to the left of x = a and becomes

infinite for x > a is said to have a hard wall at x = a. In such a case, the wavefunction will

vanish for x � a. The slope ψ0 will be finite as x ! a from the left, and will vanish for x > a.

Thus ψ0 is discontinuous at the wall.

In the first two cases ψ0 is continuous, and in the second two it can have a finite discontinuity. In

conclusion

Both ψ and ψ0 are continuous unless the potential has delta functions
(2.23)

or hard walls in which cases ψ0 may have finite discontinuities.

Let us give an slightly different argument for the continuity of ψ and dψ in the case of a potentialdx

with a finite discontinuity, such as the step shown in Fig. 1.

Figure 1: A potential V (x) with a finite discontinuity at x = a.

Integrate both sides of (2.22) a− ε to a+ ε, and then take ε! 0. We find∫ a+ε d
( )
dψ 2m

∫ a+ε

dx = − dx (E − V (x))ψ(x) . (2.24)
a ε dx dx ~2
− a−ε

The left-hand side integrand is a total derivative so we have

dψ
∣ ∣

dψ

dx a+ε

−
dx

∫
By definition, the discontinu

∣∣
ity in the

∣∣∣ 2m a+ε∣ = dx (V (x)− E)ψ(x) . (2.25)
~2

a−ε a−ε

derivative of ψ at x = a is the limit as ε ! 0 of the left-hand

side: (
dψ
) ( dψ ∣∣∣ dψ

∆a
dx

� lim
ε!0 ∣ . (2.26)

dx a+ε

−
dx

∣∣∣∣
a−ε

Back in (2.25) we then have

)

(
dψ
)

2m
∫ a+ε

∆a = lim dx (V (x)
dx ε!0 ~2

a
−E)ψ(x) . (2.27)

−ε

The potential V is discontinuous but not infinite around x = a, nor is ψ infinite around x = a and,

of course, E is assumed finite. As the integral range becomes vanishingly small about x = a the

integrand remains finite and the integral goes to zero. We thus have

∆a

(
dψ

dx

)
= 0 . (2.28)
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dψThere is no discontinuity in . This gives us one of our boundary conditions.dx

To learn about the continuity of ψ we reconsider the first integral of the differential equation. The

integration that led to (2.25) now applied to the range from x0 < a to x yields

dψ(x) dψ
∣∣ 2m

∫∣ x

= (E
dx dx x0

�
~ x0

� V (x0))dx0. (2.29)

Note that the integral on the right is a bounded

∣
function of x. We now integrate again from a� ε to

a+ ε. Since the first term on the right-hand side is a constant we find

dψ 2m a+ε x

ψ(a+ ε)� ψ(a� ε) = 2ε � 0
dx

∣∣
0

~

∫
dx dx

x a�ε

∫
(E V (x0)). (2.30)

x0

�

Taking the ε! 0∫ limit, the first term on the righ

∣∣
t-hand side clearly vanishes and the second term goes

x
to zero because dx0 (E � V (x0)) is a bounded function of x. As a result we havex0

∆aψ = 0 , (2.31)

showing that the wavefunction is continuous at x = a. This is our second boundary condition.

3 Free particle on a circle.

Consider now the problem of a particle confined to a circle of circumference L. The coordinate along

the circle is called x and we can view the circle as the interval x 2 [0, L] with the endpoints identified.

It is perhaps clearer mathematically to think of the circle as the full real line x with the identification

x � x+ L , (3.1)

which means that two points whose coordinates are related in this way are to be considered the same

point. If follows that we have the periodicity condition

ψ(x+ L) = ψ(x) . (3.2)

From this it follows that not only ψ is periodic but all of its derivatives are also periodic.

The particle is assumed to be free and therefore V (x) = 0. The time-independent Schrödinger

equation is then
~2 d2ψ� = E ψ(x) . (3.3)
2m dx2

Before we solve this, let us show that any solution must have E � 0. For this multiply the above

equation by ψ�(x) and integrate over the circle x 2 [0 , L). Since ψ is normalized we get

~2 2ψ�
∫ L d

ψ�(x) dx = E
2m 0 dx2

∫
ψ�(x)ψ(x)dx = E . (3.4)

The integrand on the left hand side can be rewritten as

~2

�
2m

∫ L

0

[ d dψ dψ� dψ
ψ� dx = E . (3.5)

dx

(
dx

)
�

dx dx

]
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and the total derivative can be integrated

~2

�
2m

[( dψ
ψ�
dx

)∣ dψ� � (3.6)
x=L

(
ψ
dx

)∣ ~2 L dψ 2
+ dx = E .

x=0

]
2m

∫
0

∣
dx

∣
Since ψ(x) and its derivatives are p

∣∣
eriodic, the con

∣∣
tributions from

∣∣
x =

∣∣
L and x = 0 cancel out and we

are left with
~2 L dψ 2

E = dx 0 , (3.7)
2m

∫
0

∣∣
dx

∣∣ ∣∣ �

which establishes our claim. We also see that E = 0 requires ψ constant (and nonzero!).

Having shown that all solutions must have E � 0 let us go back to the Schrödinger equation, which

can be rewritten as
d2ψ 2mE

=
dx2

� ψ . (3.8)
~2

We can then define k via

k2 2mE�
~
� 0 . (3.9)

Since E � 0, the constant k is real. Note that this definition is very natural, since it makes

~2k2

E = , (3.10)
2m

which means that, as usual, p = ~k. Using k2 the differential equation becomes the familiar

d2ψ
= (3.11)

2
�k2ψ .

dx

We could write the general solution in terms of sines and cosines of kx, but let’s use complex expo-

nentials:

ψ(x) � eikx. (3.12)

This solves the differential equation and, moreover, it is a momentum eigenstate. The periodicity

condition (3.2) requires

eik(x+L) = eikx ! eikL = 1 ! kL = 2πn , n 2 Z . (3.13)

We see that momentum is quantized because the wavenumber is quantized! The wavenumber has

discrete possible values
2πn

kn � , n
L

2 Z. (3.14)

All integers positive and negative are allowed and are in fact necessary because they all correspond to

different values of the momentum pn = ~kn. The solutions to the Schrödinger equation can then be

indexed by the integer n:

ψn(x) = Neiknx , (3.15)

where N is a real normalization constant. Its value is determined from∫ L L 1
1 = ψn

�(x)ψn(x)dx = N2dx = N2L
0

∫
0

! N = p , (3.16)
L
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so we have

1
ψn(x) = p eiknx

1
=

L
p 2πinx

e L . (3.17)
L

The associated energies are
~2k2

En = n ~24π2n2 2π2~2n2

= = . (3.18)
2m 2mL2 mL2

There are infinitely many energy eigenstates. We have degenerate states because En is just a

function of jnj and thus the same for n and �n. Indeed ψn and ψ�n both have energy En. The only

nondegenerate eigenstate is ψ0 = p1 , which is a constant wavefunction with zero energy.
L

Whenever we find degenerate energy eigenstates we must wonder what makes those states differ-

ent, given that they have the same energy. To answer this one must find an observable that takes

different values on the states. Happily, in our case we know the answer. Our degenerate states can be
~ ~distinguished by their momentum: ψn has momentum 2πn and ψL �n has momentum (�2πn ).L

Given two degenerate energy eigenstates, any linear combination of these states is an eigenstate

with the same energy. Indeed if
ˆ ˆHψ1 = Eψ1 , Hψ2 = Eψ2 , (3.19)

then
ˆ ˆ ˆH(aψ1 + bψ2) = aHψ1 + bHψ2 = aEψ1 + bEψ2 = E(aψ1 + bψ2) . (3.20)

We can therefore form two linear combinations of the degenerate eigenstates ψn and ψ�n to obtain

another description of the energy eigenstates:

ψn + ψ n � cos(k x� n ) ,
(3.21)

ψn � ψ�n � sin(knx) .

While these are real energy eigenstates, they are not momentum eigenstates. Only our exponentials
ˆare simultaneous eigenstates of both H and p̂.

The energy eigenstates ψn are automatically orthonormal since they are p̂ eigenstates with no

degeneracies (and as you recall eigenstates of a hermitian operator with different eigenvalues are

automatically orthogonal) :

L 1 L
n

ψn
� 2πi(m− )x

(x)ψm(x)dx = e L dx = δmn. (3.22)
0 L 0

They are also complete: w

∫
e can then construct a

∫
general wavefunction as a superposition that is in

fact a Fourier series. For any Ψ(x, 0) that satisfies∑the periodicity condition, we can write

Ψ(x, 0) = an ψn(x), (3.23)
n2Z

where, as you should check, the coefficients an are determined by the integrals

an =

∫ L

dxψn
�(x) Ψ(x, 0) . (3.24)

0

The initial state Ψ(x, 0) is then easily evolved in time:∑
� iEntΨ(x, t) = an ψn(x)e ~ . (3.25)

n2Z

Andrew Turner transcribed Zwiebach’s handwritten notes to create the first LaTeX version of this

document.
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