Quantum Physics I (8.04) Spring 2016 Assignment 5

MIT Physics Department March 11, 2015 Due Fri. March 18, 2016 12:00 noon

Reading: Griffiths: 3.2, 3.3, 3.4, 2.1 and 2.2.

Problem Set 5

1. Gaussians and uncertainty product saturation [5 points]

Consider the gaussian wavefunction

$$\psi(x) = N \exp\left(-\frac{1}{2}\frac{x^2}{a^2}\right),\tag{1}$$

where $N \in \mathbb{R}$ a is a real positive constant with units of length. The integrals

$$\int_{-\infty}^{\infty} dx e^{-\alpha x^2 + \beta x} = \sqrt{\frac{\pi}{\alpha}} \exp\left(\frac{\beta^2}{4\alpha}\right), \quad \operatorname{Re}(\alpha) > 0,$$
$$\int_{-\infty}^{\infty} dx \, x^2 e^{-\alpha x^2} = \frac{1}{2\alpha} \int_{-\infty}^{\infty} dx \, e^{-\alpha x^2}$$

(a) Use the position space wavefunction (1) to calculate the uncertainties Δx and Δp . Confirm that your answer saturates the Heisenberg uncertainty product

$$\Delta x \Delta p \geq \frac{\hbar}{2}$$
.

(Hints: These calculations are actually quite brief if done the right way! Using the second of the above integrals you don't even have to determine N. For the evaluation of $\langle \hat{p}^2 \rangle$ in position space fold one factor of \hat{p} into ψ^* .).

(b) Calculate the Fourier transform $\phi(p)$ of $\psi(x)$. Use Parseval to confirm your answer and then recalculate Δp using momentum space.

2. Complex Gaussians and the uncertainty product [10 points]

Consider the gaussian wavefunction

$$\psi(x) = N \exp\left(-\frac{1}{2}\frac{x^2}{\Delta^2}\right), \quad \Delta \in \mathbb{C}, \quad \operatorname{Re}(\Delta^2) > 0,$$
(1)

where N is a real normalization constant and Δ is now a complex number: $\Delta^* \neq \Delta$. The integrals in Problem 1 are also useful here and so is the following relation, valid for any nonzero complex number z,

$$\operatorname{Re}\left(\frac{1}{z}\right) = \frac{\operatorname{Re}(z)}{|z|^2}$$
 (prove it!)

- (a) Use the position space representation (1) of the wavefunction to calculate the uncertainties Δx and Δp . Leave your answer in terms of $|\Delta|$ and $\operatorname{Re}(\Delta^2)$. (Δx will depend on both¹, while Δp will depend only on $\operatorname{Re}(\Delta^2)$).
- (b) Calculate the Fourier transform $\phi(p)$ of $\psi(x)$. Use Parseval to confirm your answer and then recalculate Δp using momentum space.
- (c) We parameterize Δ using a phase $\phi_{\Delta} \in \mathbb{R}$ as follows

$$\Delta = |\Delta| e^{i\phi_{\Delta}}.$$

Calculate the product $\Delta x \Delta p$ and confirm that the answer can be put in terms of a trigonometric function of ϕ_{Δ} and that $|\Delta|$ drops out. Is your answer reasonable for $\phi_{\Delta} = 0$ and for $\phi_{\Delta} = \frac{\pi}{4}$?

(d) Consider the free evolution of a gaussian wave packet in Problem 3 of Homework 4. What is Δp at time equal zero? Examine the time evolution of the gaussian (from the solution!) and read the value of the time-dependent (complex) constant Δ^2 . Confirm that Δp , found in (a), gives a time-independent result.

3. Exercises with a particle in a box [15 points]

Consider a 1D problem for a particle of mass m that is free to move in the interval $x \in [0, a]$. The potential V(x) is zero in this interval and infinite elsewhere. For that system consider a solution of the Schrödinger equation of the form

$$\Psi_n(x,t) = N \sin\left(\frac{n\pi}{a}x\right) e^{-i\phi_n(t)}, \quad x \in [0,a],$$

and $\Psi_n(x,t) = 0$ for x < 0 and x > a. Here $n \ge 1$ is an integer.

- (a) Find the expression for the (real) phase $\phi_n(t)$ so that the above wavefunction solves the Schrödinger equation. Find the normalization constant N.
- (b) Use $\Psi_n(x,0)$ to calculate $\langle x \rangle, \langle x^2 \rangle$, and Δx .
- (c) Use $\Psi_n(x,0)$ to calculate $\langle p \rangle, \langle p^2 \rangle$, and Δp .
- (d) Is the uncertainty inequality satisfied? Is it saturated?
- (e) What answers in (b) and (c) change for $\Psi_n(x,t)$? Explain.

4. A Hard Wall [5 points]

A particle of mass m is moving in one dimension, subject to the potential V(x):

$$V(x) = \begin{cases} 0, & \text{for } x > 0, \\ \infty & \text{for } x \le 0. \end{cases}$$

Find the stationary states and their energies. These states cannot be normalized.

¹Actually Δx can be written in terms of $\operatorname{Re}(1/\Delta^2)$ alone.

5. A Step Up on the Infinite Line [10 points]

A particle of mass m is moving in one dimension, subject to the potential V(x):

$$V(x) = \begin{cases} V_0, & \text{for } x > 0, \\ 0, & \text{for } x \le 0. \end{cases}$$

Find the stationary states that exist for energies $0 < E < V_0$.

6. A Wall and Half of a Finite Well [10 points]

A particle of mass m is moving in one dimension, subject to the potential V(x):

$$V(x) = \begin{cases} \infty, & \text{for } x < 0, \\ -V_0, & \text{for } 0 < x < a, \\ 0, & \text{for } x > a. \end{cases}$$

Find the stationary states that correspond to bound states (E < 0, in this case). Is there always a bound state? Find the minimum value of z_0

$$z_0^2 = \frac{2ma^2V_0}{\hbar^2}$$

for which there are three bound states. Explain the precise relation of this problem to the problem of the finite square well of width 2a.

7. Mimicking hydrogen with a one-dimensional square well. [5 points]

The hydrogen atom the Bohr radius a_0 and ground state energy E_0 are given by

$$a_0 = \frac{\hbar^2}{me^2} \simeq 0.529 \times 10^{-10} \text{m}, \quad E_0 = -\frac{e^2}{2a_0} = -13.6 \text{ eV}$$

The ground state is a bound state and the potential goes to zero at infinity. We want to design a one-dimensional finite square well

$$V(x) = \begin{cases} -V_0, & \text{for } |x| < a_0, \quad V_0 > 0, \\ 0, & \text{for } |x| > a_0, \end{cases}$$

that simulates the hydrogen atom. Calculate the value of V_0 in eV so that the ground state of the box is at the correct depth.

8. No states with E < V(x) [5 points]

Consider a real stationary state $\psi(x)$ with energy E:

$$-\frac{\hbar^2}{2m}\psi''(x) + [V(x) - E]\psi(x) = 0.$$

- (a) Prove that E must exceed the minimum value of V(x) by noting that $E = \langle H \rangle$.
- (b) Explain the claim by trying (and failing) to sketch a wavefunction consistent with being on the classically inaccessible region for all values of x.

MIT OpenCourseWare https://ocw.mit.edu

8.04 Quantum Physics I Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.