Quantum Physics I (8.04) Spring 2016
 Assignment 5

MIT Physics Department
Due Fri. March 18, 2016
March 11, 2015
12:00 noon
Reading: Griffiths: 3.2, 3.3, 3.4, 2.1 and 2.2.

Problem Set 5

1. Gaussians and uncertainty product saturation [5 points]

Consider the gaussian wavefunction

$$
\begin{equation*}
\psi(x)=N \exp \left(-\frac{1}{2} \frac{x^{2}}{a^{2}}\right) \tag{1}
\end{equation*}
$$

where $N \in \mathbb{R} a$ is a real positive constant with units of length. The integrals

$$
\begin{aligned}
\int_{-\infty}^{\infty} d x e^{-\alpha x^{2}+\beta x} & =\sqrt{\frac{\pi}{\alpha}} \exp \left(\frac{\beta^{2}}{4 \alpha}\right), \quad \operatorname{Re}(\alpha)>0 \\
\int_{-\infty}^{\infty} d x x^{2} e^{-\alpha x^{2}} & =\frac{1}{2 \alpha} \int_{-\infty}^{\infty} d x e^{-\alpha x^{2}}
\end{aligned}
$$

(a) Use the position space wavefunction (1) to calculate the uncertainties Δx and Δp. Confirm that your answer saturates the Heisenberg uncertainty product

$$
\Delta x \Delta p \geq \frac{\hbar}{2}
$$

(Hints: These calculations are actually quite brief if done the right way! Using the second of the above integrals you don't even have to determine N. For the evaluation of $\left\langle\hat{p}^{2}\right\rangle$ in position space fold one factor of \hat{p} into ψ^{*}.).
(b) Calculate the Fourier transform $\phi(p)$ of $\psi(x)$. Use Parseval to confirm your answer and then recalculate Δp using momentum space.
2. Complex Gaussians and the uncertainty product [10 points]

Consider the gaussian wavefunction

$$
\begin{equation*}
\psi(x)=N \exp \left(-\frac{1}{2} \frac{x^{2}}{\Delta^{2}}\right), \quad \Delta \in \mathbb{C}, \quad \operatorname{Re}\left(\Delta^{2}\right)>0 \tag{1}
\end{equation*}
$$

where N is a real normalization constant and Δ is now a complex number: $\Delta^{*} \neq \Delta$. The integrals in Problem 1 are also useful here and so is the following relation, valid for any nonzero complex number z,

$$
\operatorname{Re}\left(\frac{1}{z}\right)=\frac{\operatorname{Re}(z)}{|z|^{2}} \quad \text { (prove it!) }
$$

(a) Use the position space representation (1) of the wavefunction to calculate the uncertainties Δx and Δp. Leave your answer in terms of $|\Delta|$ and $\operatorname{Re}\left(\Delta^{2}\right) .(\Delta x$ will depend on both 1 , while Δp will depend only on $\operatorname{Re}\left(\Delta^{2}\right)$).
(b) Calculate the Fourier transform $\phi(p)$ of $\psi(x)$. Use Parseval to confirm your answer and then recalculate Δp using momentum space.
(c) We parameterize Δ using a phase $\phi_{\Delta} \in \mathbb{R}$ as follows

$$
\Delta=|\Delta| e^{i \phi_{\Delta}}
$$

Calculate the product $\Delta x \Delta p$ and confirm that the answer can be put in terms of a trigonometric function of ϕ_{Δ} and that $|\Delta|$ drops out. Is your answer reasonable for $\phi_{\Delta}=0$ and for $\phi_{\Delta}=\frac{\pi}{4}$?
(d) Consider the free evolution of a gaussian wave packet in Problem 3 of Homework 4. What is Δp at time equal zero? Examine the time evolution of the gaussian (from the solution!) and read the value of the time-dependent (complex) constant Δ^{2}. Confirm that Δp, found in (a), gives a time-independent result.

3. Exercises with a particle in a box [15 points]

Consider a 1D problem for a particle of mass m that is free to move in the interval $x \in[0, a]$. The potential $V(x)$ is zero in this interval and infinite elsewhere. For that system consider a solution of the Schrödinger equation of the form

$$
\Psi_{n}(x, t)=N \sin \left(\frac{n \pi}{a} x\right) e^{-i \phi_{n}(t)}, \quad x \in[0, a]
$$

and $\Psi_{n}(x, t)=0$ for $x<0$ and $x>a$. Here $n \geq 1$ is an integer.
(a) Find the expression for the (real) phase $\phi_{n}(t)$ so that the above wavefunction solves the Schrödinger equation. Find the normalization constant N.
(b) Use $\Psi_{n}(x, 0)$ to calculate $\langle x\rangle,\left\langle x^{2}\right\rangle$, and Δx.
(c) Use $\Psi_{n}(x, 0)$ to calculate $\langle p\rangle,\left\langle p^{2}\right\rangle$, and Δp.
(d) Is the uncertainty inequality satisfied? Is it saturated?
(e) What answers in (b) and (c) change for $\Psi_{n}(x, t)$? Explain.
4. A Hard Wall [5 points]

A particle of mass m is moving in one dimension, subject to the potential $V(x)$:

$$
V(x)= \begin{cases}0, & \text { for } x>0 \\ \infty & \text { for } x \leq 0\end{cases}
$$

Find the stationary states and their energies. These states cannot be normalized.

[^0]5. A Step Up on the Infinite Line [10 points]

A particle of mass m is moving in one dimension, subject to the potential $V(x)$:

$$
V(x)=\left\{\begin{array}{cl}
V_{0}, & \text { for } x>0 \\
0, & \text { for } x \leq 0
\end{array}\right.
$$

Find the stationary states that exist for energies $0<E<V_{0}$.
6. A Wall and Half of a Finite Well [10 points]

A particle of mass m is moving in one dimension, subject to the potential $V(x)$:

$$
V(x)=\left\{\begin{aligned}
\infty, & \text { for } x<0 \\
-V_{0}, & \text { for } 0<x<a, \quad\left(V_{0}>0\right) \\
0, & \text { for } x>a
\end{aligned}\right.
$$

Find the stationary states that correspond to bound states ($E<0$, in this case). Is there always a bound state? Find the minimum value of z_{0}

$$
z_{0}^{2}=\frac{2 m a^{2} V_{0}}{\hbar^{2}}
$$

for which there are three bound states. Explain the precise relation of this problem to the problem of the finite square well of width $2 a$.
7. Mimicking hydrogen with a one-dimensional square well. [5 points] The hydrogen atom the Bohr radius a_{0} and ground state energy E_{0} are given by

$$
a_{0}=\frac{\hbar^{2}}{m e^{2}} \simeq 0.529 \times 10^{-10} \mathrm{~m}, \quad E_{0}=-\frac{e^{2}}{2 a_{0}}=-13.6 \mathrm{eV}
$$

The ground state is a bound state and the potential goes to zero at infinity. We want to design a one-dimensional finite square well

$$
V(x)=\left\{\begin{aligned}
-V_{0}, & \text { for }|x|<a_{0}, \quad V_{0}>0 \\
0, & \text { for }|x|>a_{0}
\end{aligned}\right.
$$

that simulates the hydrogen atom. Calculate the value of V_{0} in eV so that the ground state of the box is at the correct depth.
8. No states with $E<V(x)$ [5 points]

Consider a real stationary state $\psi(x)$ with energy E :

$$
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)+[V(x)-E] \psi(x)=0
$$

(a) Prove that E must exceed the minimum value of $V(x)$ by noting that $E=\langle H\rangle$.
(b) Explain the claim by trying (and failing) to sketch a wavefunction consistent with being on the classically inaccessible region for all values of x.

MIT OpenCourseWare
https://ocw.mit.edu

8.04 Quantum Physics I

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Actually Δx can be written in terms of $\operatorname{Re}\left(1 / \Delta^{2}\right)$ alone.

