
Wave Functions: A wave-packet
Somehow, in  this  transition from classical  mechanics (CM) to  quantum mechanics (QM),  we have lost  our
friends position and momentum (x and p).  Here I will show that we havenʼt really lost them, they are just a
little less certain in QM.

The wave function Y(x)

We start with a wave function with three parts: an amplitude A, a Gaussian envelope ‰-
Hx-x0L2

2 d , and a phase
oscillation  ‰Â k0 Hx-x0L.   The  envelope  will  serve  as  the  position  of  our  particle;  we  know  it  is  somewhere
around x0, with an uncertainty of d.  The oscillation with wave number k0 serves as our momentum, since
de Broglie tells us that p = —k.

In[1]:=

Yu = A Exp@-Hx - x0L^2 ê H2 d^2LD Exp@I k0 Hx - x0LD

Out[1]=
A ‰

Â k0 Hx-x0L-
Hx-x0L2

2 d2

(To keep Mathematica happy, we need to make explicit some assumptions about our parameters...)

In[2]:=
$Assumptions = 8d > 0, Element@8x, x0, k0, d<, RealsD<

Out[2]=
8d > 0, Hx x0 k0 dL œ Reals<

Before  we  get  much  further,  letʼs  normalize  the  wave  function.   By  normalizing  Y(x)  we  ensure  that  the
probability of finding our particle somewhere is equal to 1.

In[3]:=
Px = Abs@YuD^2;
Anorm = Solve@Integrate@Px, 8 x, -Infinity, Infinity<D ã 1, AD

Out[4]=
::A Ø -

1

d p1ê4
>, :A Ø

1

d p1ê4
>>

We find that there are 2 possible values of A, one positive and one negative.  There is no way to say which
is correct, since in the end we can only measure YHxL 2 which means we only care about A2.  Letʼs update
Y(x) with the positive value of A.

In[5]:=
Y = Yu ê. Anorm@@2DD

Out[5]= ‰
Â k0 Hx-x0L-

Hx-x0L2

2 d2

d p1ê4

So that we can see what we are doing, here is a plot of the real part and magnitude of Y(x).  To move the
particle  around,  change x0.   To make a well-localized particle with low average momentum, make d small
(e.g., logD = -1) and k0 close to 0.  Making d large (e.g., logD = 2) moving k0 away from zero makes a plane-
wave-like wave function.



In[6]:=
Manipulate@Plot@8Re@YD, Abs@YD< ê. 8A Ø 1, d Ø 10^logD, x0 Ø x0, k0 Ø k0<,

8x, -10, 10<, PlotRange Ø 8-1, 1<, Filling Ø Axis, PerformanceGoal Ø QualityD,
88logD, 0<, -1, 2, 0.1, Appearance Ø "Labeled"<,
88x0, 2<, -10, 10, 0.1, Appearance Ø "Labeled"<,
88k0, 4<, -10, 10, 0.1, Appearance Ø "Labeled"<D

Out[6]=

logD 0

x0 2

k0 4

The Fourier Transform of YHxL, Y
é
HkL

The position-space wave function Y(x), shown above, gives us a good idea of the uncertainty in x, but not a
lot of information about the uncertainty in p.  To get this, letʼs take the Fourier transform of Y(x) to find Y

è
HkL.

In[7]:=
Y
è
= 1 ê Sqrt@2 pD Integrate@Y Exp@-I k xD, 8 x, -Infinity, Infinity<D

Out[7]= d ‰-
1

2
d2 Hk-k0L2-Â k x0

p1ê4

This momentum-space wave function Y
è
HkL, can be separated in a way similar to YHxL... amplitude, envelope,

phase.

In[8]:=
Y
è
==

d

p1ê4
µ ‰-

1

2
d2 Hk-k0L2 µ ‰-Â k x0

Out[8]=
True

And it is properly normalized! (Has anyone heard of Parsevalʼs Theorem?)
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In[9]:=
IntegrateAAbs@Y

è
D^2, 8 k, -Infinity, Infinity<E

Out[9]=
1

In[10]:=
ManipulateAPlotA9Re@Y

è
D, Abs@Y

è
D= ê. 8d Ø 10^logD, x0 Ø x0, k0 Ø k0<,

8k, -10, 10<, PlotRange Ø 8-1, 1<, Filling Ø Axis, PerformanceGoal Ø QualityE,
88logD, 0<, -1, 2, 0.1, Appearance Ø "Labeled"<,
88x0, 2<, -10, 10, 0.1, Appearance Ø "Labeled"<,
88k0, 4<, -10, 10, 0.1, Appearance Ø "Labeled"<E

Out[10]=

logD 0

x0 2

k0 4

You  can  see  that  the  equation  for  Y
è
HkL  is  essentially  identical  to  Y(x)  (only  an  overall  phase  of  ‰Â k0 x0  is

missing).   In  particular,  the  uncertainty  in  k  is  now clear;  the  width  of  the  Gaussian  in  frequency  space  is
inversely proportional to d, so a narrow peak in Y(x) leads to a wide peak in Y

è
HkL!  Putting this all together we

see that Dx = d/ 2  and Dk = 1/ 2 d such that Dx Dk = 1/2, which de Broglie tells us means Dx Dp = —/2.
Implication: the Uncertainty Principal need not be an axiom.  It is simply the result of the mixed wave-
particle nature of reality.

The Inverse Fourier Transform of Y
é
HkL

Just to show that it works, letʼs take the inverse Fourier transform of Y
è
HkL to get back to YHxL...
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In[11]:=
Y2 = 1 ê Sqrt@2 pD IntegrateAY

è
Exp@I k xD, 8 k, -Infinity, Infinity<E

Out[11]= ‰
Hx-x0L J2 Â d2 k0-x+x0N

2 d2

d p1ê4

In[12]:=
Simplify@Y2 ã YD

Out[12]=
True
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