
8.04: Quantum Mechanics Professor Allan Adams
Massachusetts Institute of Technology Wednesday April 18 2012

Exam 2

Last Name:

First Name:

Check Recitation Instructor Time
R01 Barton Zwiebach 10:00
R02 Barton Zwiebach 11:00
R03 Matthew Evans 3:00
R04 Matthew Evans 4:00

Instructions:
Show all work. All work must be done in this exam packet.
This is a closed book exam – books, notes, phones, calculators etc are not allowed.
You have 1.5 hours to solve the problems. Exams will be collected at 12:30pm sharp.

Problem Max Points Score Grader

1 40

2 30

3 30

Total 100
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Formula Sheet 1

Fourier Transform Conventions:

1
∫ ∞

ik
∞

f(x) = √ dk e x 1˜ ˜f(k) f(k) = √
∫

dx e−ikxf(x)
2π 2π−∞ −∞

Delta Functions:∫ ∞ 1 ∞
dx f(x) δ(x− a) = f(a) δ(x) = x

2−∞

∫
dk eik

π{ −∞

0 x = 0
} {

0 m = n
δ(x) = δ∞ x = 0 mn =

1 m = n

}

Operators and the Schrödinger Equation:

∆x =
√
〈 ˆ ˆ ˆ ˆ ˆ ˆx̂2〉 − 〈x̂〉2 [A,B] = AB −BA

∂ ∂
p̂ = −i~ ˆi~ ψ(x, t) = E ψ(x, t)

∂x ∂t

ˆ ~2 ∂2 ~2 ∂2
E = − + V (x) E φE(x) = φE(x) + V (x)φE(x)

2m∂x2
−

2m∂x2

Common Integrals:∫ ∞
dx e−x

2

=
√ ∞
π (f |g) =

−∞

∫
dx f(x)∗ g(x)

−∞

For an infinite square well with 0 ≤ x ≤ L:

φn(x) =

√
2

sin (knx) (φn
L

|φm) = δmn

(n+ 1)π ~2k2
kn = En = n

L 2m

Continuity Condition for V (x) = Woδ(x− a):

φE(a+
2mW

) = φE(a−) φ′
o

E(a+)− φ′E(a−) = φE(a)
~2

Planck’s Constant:
~ ' 6.6 · 10−16eV · s

6 6
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Formula Sheet 2

The Probability Current:

i~
(

∂ψ∗ ∂ψJ (x, t) = ψ
2m ∂x

− ψ∗
∂x

)
Definition of the S-matrix( and the scattering phase:

B
C

)
= S

(
A
D

)
, t = |t| e−iϕ, T = |t|2

Raising and Lowering( Operators for the 1d Harmonic Oscillator (β2 = ~) ( /mω):

1 1 β 1 1 β
â = √ x̂+ i p̂ , â† = √ x̂− i p̂ ,

β ~ 2 β ~

) [
a,ˆ â†

]
= 1

2

Normalization and Orthonormality of 1d HO wavefunctions :

2 2 x
φn(x) = A e−x /2β

n Hn

( )
An = (2nn! β

√
π)−1/2 (φn φ

β
| m) = δnm

Laplacian in Spherical Coordinates.

2 1 1 1 ∂ ∂ 1 ∂2~p −i~∇~ ∇~ˆ = = ∂2rr + sin θ +
r r2

(
sin θ ∂θ

(
∂θ

)
sin2 θ ∂φ2

)
Angular Momentum Operators in Spherical Coordinates:

∂
L̂z = −i~ ˆ, L2 = 2

φ
−~

∂

[
1 ∂

sin θ ∂θ

(
∂

sin θ
∂θ

)
1 ∂2

+
sin2 θ ∂φ2

]
Angular Momentum Commutators

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[Ly, Lz] = i~Lx , [L 2
z, Lx] = i~Ly , [Lx, Ly] = i~Lz , [Li, L ] = 0

Angular Momentum Raising and Lowering Operators

ˆ ˆ ˆ ˆL = Lx + iLy = ~ ˆ ˆ
+ e+iφ (i cot θ ∂φ + ∂θ) [Lz, L ] =± ±~L .±

ˆ ˆL = L− x − ˆiLy = ~e−iφ (i cot θ ∂ − ˆ∂ 2 ˆ
φ θ) [L ,L ] = 0 .±

First Few Spherical Harmonics

Y0,0 =

√
1
, Y1,0 =

√
3 3

cos θ , Y1, 1 = ∓
√

sin θe±iφ , (Ylm|Yl′m′) = δl .
π 4π

± l′δmm′
4 8π
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1. (35 points) Short Answer

(a) Fill in the blanks for the following four commutators:

5

ˆ[ẑ, p̂z] = [ẑ, Lz] =

ˆ[x,ˆ p̂z] = [x,ˆ Lz] =

ˆ ˆ ˆ(b) Let A and B be Hermitian, i.e. A† ˆ ˆ ˆ= A and B† = B. Beneath each of the
following operators, write its Hermitian adjoint.

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆiA AB AB +BA AB − ˆ ˆBA

ˆ ˆ ˆ ˆ ˆ ˆ(c) Let A and B be Hermitian, i.e. A = A† and B = B†. Which of the following is a
Unitary operator? Circle each that is Unitary:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
eiA eAB eAB+BA eAB−

ˆBA None of these
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(d) It is commonly believed that Unicorns can be described by 3 observables, Color,
Happiness and Location. Quantum Unicorns are thus described by the operators,
ˆ ˆ ˆC, H and L. These operators have been conjectured to satisfy the commutator

ˆ ˆ[C,H] = ~L̂

In a landmark measurement, Prof. Evans has directly observed a Unicorn and
determined its Color to be Purple with absolute certainty (he’s an excellent ex-
perimentalist). Can he simultaneously determine its Happiness with absolute
certainly? Circle and explain your answer:

Always, because:

Sometimes, if:

Never, because:

(e) Shortly after Prof. Evans’s announcement, the OPERA collaboration announced
its own measurement of a perfectly Happy Unicorn. Given these measurements

ˆ ˆof C and H, the corresponding quantum operators C and H must be Hermitian.
ˆIs L also Hermitian? Explain why or why not.

Yes No

ˆWhat does this imply about the eigenvalues of the Unicorn Location operator L?

ˆThe eigenvalues of L must be .
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(f) Given that Y7, 7 = C (sin θ)7e−7iφ, where C is a constant, what is Y− 7,−6? (Don’t
worry about the overall normalization.)

Y7,−6 ∝

(g) Suppose a particle on a sphere is in the state,

ψ(θ, φ) = i

√
3

sin θ sin 3φ .
4π

What possible values of Lz can measurement find and with what probabilities will
these be observed?

Lz =
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(h) An engineer has to design a 1D potential for a particle of mass m in which the
three lowest eigenstates have energies 1meV, 3meV and 5meV. Propose a simple
solution using the potentials you have learned in 8.04. Specify the value of any
constants in your potential.

V (x) = Constants :

ˆ(i) Suppose you discover a system which includes an operator J such that

ˆ ˆ ˆ[E, J ] = ε J ,

ˆwhere E is the energy operator and ε is a constant with dimensions of energy.
ˆWhat can you say about the set of eigenvalues of E?
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2. (35 points) Decoding the S-Matrix
~2 2

A beam of particles of mass m, wavenumber k and energy E = k > 0, is scattered
2m

off an unknown 1d potential, V (x), which asymptotes to zero in both directions. After
extensive measurement, it is determined that the S-matrix for the system is extremely
well approximated by,

1 2g(g + iη)i sin(η) η2
S = ,

η2 + g2(1− e2iη) η2 2g(g − iη)i sin(η)

where η = 2kL, with L and g parameters

(
that have been tuned to matc

)
h the data.

Your job is to deduce as much as possible about the unknown potential V (x).

(a) Is V (x) invariant under Parity, x→ −x? Briefly explain why or why not.

Yes No

(b) What is the probability for a particle incident from the left to transmit to the
right, TLR? What about TRL from right to left?

You may find the following useful: |η2+g2(1−e2iη)|2 = η4+4g2(g2+η2)(sin η)2

TLR =

TRL =
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(c) Are there any resonances in this system? In not, explain why not. If so, list the
values of η for which there are resonances.

Yes No

(d) How does the transmission probability TLR behave at low energy? At high energy?
If either limiting value is zero, give the leading term.

E
TLR −−

→−→0 E
TLR −−

→∞−→

(e) Sketch the transmission probability TLR as a function of η for a typical value of
g, being careful to explicitly indicate the features discussed in parts (c) and (d).
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(f) Suppose there exist bound states with energies E < 0. Use the S-matrix to derive
an equation which must be satisfied by the energy

equation in the form, f(β) = g2, where β = αL =
NOTE: DO NOT ATTEMPT TO SOLVE THIS EQUATION

√of any bound state. Put your
−2mE

~2 L is dimensionless.
ANALYTICALLY!

= g2

(g) Solve your equation graphically in the space below. How many bound states does
this potential support? Does this number depend on the value of g?
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(h) Based on everything you have deduced above, list the properties the potential
must have, then conjecture a potential V (x) which could produce the S-matrix
we measured above.
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3. (30 points) Quantum Epicycles

Imagine a planet which is constrained to move freely along a sphere, forming a sym-
~metric rigid rotor with moment of inertia I. Let L denote the angular momentum of

the planet about the center of the sphere. Recall that the classical kinetic energy for
~a symmetric rotor with moment of inertia I is given by, E = 1 L2.

2I

(a) What are the energy eigenvalues and eigenfunctions for this system? You do not

need to give the functional forms of the eigenfunctions, just identify them.

(b) What is the degeneracy of the nth energy level (that is, how many physically
distinct states share the same energy)?
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Now suppose that, in addition to its angular momentum along the sphere, our planet
1 ~ ~also carries its own internal angular momentum, S, so that, as for L,

[Sx, Sy] = i~Sz [Sy, Sz] = i~Sx [Sz, Sx] = i~Sy .

~ ~Importantly, S is completely independent of L, ie

[Li, Sj] = 0 .

The total angular momentum of the full system is then3

~ ~ ~ ~ ~J = L+ S J2 = L2 + S2 + 2L · S .

(c) Is it possible to find a simultaneous eigenstate of L2, Lz, S
2 and Sz?

Hint: This should take zero calculation.

(d) Is it possible to find a simultaneous eigenstate of J2 and L2? J2 and S2?

1 ~For example, S could represent the fact that the planet is itself, like the rotating earth, a tiny rigid rotor,
~or that the planet in fact moves on a small epicycle2, etc. The details of S do not matter for the problem at

~hand, all you need to know is that it is an angular momentum vector and is independent of L
2Do not scorn epicycles! They’re nothing but a truncated fourier series.
3 ~ ~For example, Jx = Lx + Sx, etc, while L · S = LxSx + LySy + LzSz.
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(e) Is it possible to find a simultaneous eigenstate of J2 and Lz? J2 and Sz?

(f) Is it possible to find a simultaneous eigenstate of J2 and Jz?
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