Physics 8.03
 Vibrations and Waves

Lecture 9
Wave equation in 2D and 3D
Time-independent Fourier analysis

Last time: Boundary Conditions

- Reflection and transmission

$$
r=\frac{v_{2}-v_{1}}{v_{2}+v_{1}} \text { and } \tau=\frac{2 v_{2}}{v_{2}+v_{1}}
$$

- Harmonic pulses $\quad \geqslant$

$$
y(x, t)=y_{0} \cos (k x \pm \omega t+\phi)
$$ (traveling waves)

- Separable solutions $\Rightarrow y(x, t)=f(x) \cos (\omega t+\phi)$ (standing waves)
- Boundaries $[0, L]$
$\quad y_{n}(x, t)=A_{n} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\omega_{n} t+\phi\right)$
- Energy carried by waves

$$
\frac{d U}{d x}=\frac{1}{2} T\left(\frac{\partial y}{\partial x}\right)^{2} \text { and } \frac{d K}{d x}=\frac{1}{2} \mu\left(\frac{\partial y}{\partial t}\right)^{2}
$$

- Wave equation in 2 and 3 dimensions
- Waves of arbitrary shapes
- Fourier analysis

