Physics 8.03

Vibrations and Waves

Lecture 7
The Wave Equation
Solutions to the Wave Equation

Last time: External driving force

- Applied an external driving force to a coupled oscillator system
\square In steady-state coupled system takes on frequency of the driving force
- When driving force is at a normal mode frequency
\rightarrow resonance

A Recipe' for coupled oscillators

- Find forces acting on each particle
- Coupled differential equations
- No driving force \rightarrow homogeneous
- Driving force \rightarrow at least one eqn. is inhomogenous
- Always solve homogeneous equation first
- Trial solution $\rightarrow x_{i}(t)=C_{i} \cos (\omega t-\delta)$
- Coupled (simultaneous) algebraic equations

$$
\boldsymbol{\sim}^{*} \rightarrow \mathrm{C}=\mathrm{D}\left(\begin{array}{c}
\mathrm{C}_{1} \\
\mathrm{C}_{2} \\
\vdots \\
\mathrm{C}_{\mathrm{N}}
\end{array}\right)
$$

A Recipe' for Coupled Oscillators

 ...contd...- "Normal" modes
- Frequencies (eigenvalues): ω_{i} are the roots of $\boldsymbol{\sigma}^{*}$, calculate by solving for ω when $\operatorname{det}\left(\boldsymbol{\sigma}^{*}\right)=0$
- Ratios of amplitudes: Plug $\omega=\omega_{\mathrm{i}}$ back into $\boldsymbol{\sigma}^{*} \mathrm{C}$
- Any other motion \rightarrow superposition of all normal modes
- Now turn on the harmonic driving force
- Solve inhomogenous set using Cramer's rule - For each C_{i} replace the i-th column of ${ }^{*}$ with $\overrightarrow{\mathrm{D}}$

Last time: N coupled oscillators

- N identical oscillators (N beads on a string)
- N normal modes
- Frequency and amplitude of motion of the p-th depends on
- Mode number, n
- Location of particle in the array, p
- As $\mathrm{N} \rightarrow \infty$, we get a continuous system of oscillators

Wave Equation and its Solutions

- Waves $\boldsymbol{>}$ oscillations in space and time
- $y(x, t)$
- Transverse or longitudinal waves
- Traveling or standing waves
- Solutions to wave equation
- Pulses of arbitrary shape $\boldsymbol{\nabla} y(x, t)=f(x \pm \nu t)$
- Harmonic pulses $\Rightarrow y(x, t)=y_{0} \cos (k(x \pm v t)+\phi)$
\square Separable solutions $\rightarrow y(x, t)=f(x) \cos (\omega t+\phi)$

