Physics 8.03

Vibrations and Waves

Lecture 6
Driven Coupled Oscillators

Last time: Coupled oscillators

- Normal modes of oscillation
- Harmonic motion at fixed (eigen)frequencies
- Amplitude ratios for each mode (constant)
- "Any old motion"
- All allowed motions are a superposition of all the normal modes

External driving force

- Introduce harmonic external driving force in a coupled oscillator system
- N oscillators $(\mathrm{N} \circledast 1)$

A Recipe’

- Find forces acting on each particle
- Coupled differential equations
- No driving force \rightarrow homogeneous
- Driving force \rightarrow at least one eqn. is inhomogenous
- Always solve homogeneous equation first
- Trial solution $\rightarrow x_{i}(t)=C_{i} \cos (\omega t-\delta)$
- Coupled (simultaneous) algebraic equations

$$
\boldsymbol{\sigma}^{*} \rightarrow \mathrm{C}=\mathrm{D}\left(\begin{array}{c}
\mathrm{C}_{1} \\
\mathrm{C}_{2} \\
\vdots \\
\mathrm{C}_{\mathrm{N}}
\end{array}\right)
$$

...The Recipe’

- "Normal" modes
- Frequencies (eigenvalues): ω_{i} are the roots of $\boldsymbol{\Omega}^{*}$, calculate by solving for ω when $\operatorname{det}\left(\boldsymbol{*}^{*}\right)=0$
- Ratios of amplitudes: Plug $\omega=\omega_{\mathrm{i}}$ back into $\boldsymbol{\sigma}^{*} \mathrm{C}$
- Any other motion \rightarrow superposition of all normal modes
- Now turn on the harmonic driving force
- Solve inhomogenous set using Cramer's rule - For each C_{i} replace the i-th column of ${ }^{*}$ with $\overrightarrow{\mathrm{D}}$

