Physics 8.03

Vibrations and Waves

Lecture 2

Problem Set \#1

- What's on it?
- Three problems on complex notation and superposition
- Two on simple harmonic oscillators
- One on damped harmonic oscillator (Need to make a matlab plot)

More organizational things

- Text books
- Vibrations and Waves, by French (required)
- Nearly every page used in 8.03
- EM vibrations, waves and radiation, by Bekefi and Barrett (required)
- Lots of jumping around, pay attention to reading assignments
- Optics, by Hecht (recommended)
- Useful for Polarization, Interference, Diffraction

More organizational things

- Grades on the web
- Part of a pilot system of web-based grade database
- Ready in mid-February
- Anonymous (or otherwise) feedback
- I will respond $\boldsymbol{>}$ be constructive
- I will post your comments (anonymously) along with my response $\boldsymbol{>}$ avoid profanity

Last time: Simple harmonic motion

- Equation of Motion

$$
\frac{d^{2} x}{d t^{2}}+\omega_{0}^{2} x=0
$$

$$
=A \cos \left(\omega_{0} t+\phi\right)
$$

- Solutions in three forms

$$
\begin{aligned}
x(t) & =A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& =\operatorname{Re}\left[A \cdot e^{j\left(\omega_{0} t+\phi\right)}\right]
\end{aligned}
$$

$$
-\frac{d U(x)}{d x}=F(x)=-k x
$$

$$
\Rightarrow U(x)=\frac{1}{2} k x^{2}
$$

DAMPED HARMONIC MOTION

- Finish up simple harmonic motion
- Conservative forces, quadratic potentials and SHM
- Approximate SHOs: the pendulum
- Add damping term to equation of motion
- Solutions depend on size of the damping
- Lightly damped (under-damping)
- Heavily damped (over-damping)
- Critically damped

