Physics 8.03
 Vibrations and Waves

Lecture 11
Fourier Analysis with traveling waves
Dispersion

Last time:

- Arbitrary motion \rightarrow Superposition of ALL possible normal modes

$$
y(x, t)=\sum_{m=1}^{\infty} A_{m} \sin \left(k_{m} x\right) \cos \left(\omega_{m} t+\beta_{m}\right)+\sum_{n=0}^{\infty} B_{n} \cos \left(k_{n} x\right) \cos \left(\omega_{n} t+\beta_{n}\right)
$$

- Orthogonal functions \rightarrow Fourier coefficients

$$
\begin{aligned}
& A_{m}=\frac{2}{L} \int_{0}^{L} y(x, t=0) \sin \left(k_{m} x\right) d x \\
& B_{n}=\frac{2}{L} \int_{0}^{L} y(x, t=0) \cos \left(k_{n} x\right) d x
\end{aligned}
$$

Fourier expansion recipé

- Start with superposition of all possible modes
- Determine the simplest basis functions using
- Boundary conditions $\rightarrow[0, L]$ or $[-L / 2, L / 2]$ or $[-L, L]$
- Symmetry $\rightarrow f(-x, 0)=f(x, 0)$ or $f(-x, 0)=-f(x, 0)$
- Initial condition $\rightarrow y(x, 0)=0$ or $v_{y}(x, 0)=0$
- Determine the Fourier coefficients -- A_{n} and/or B_{n} Use orthogonality relations with
- Initial deformation $y(x, t=0)$ or
- Initial velocity $\nu_{y}(x, t=0)$
- Add the time-dependence
- Fourier expansions for traveling waves
- What happens if the Fourier components all travel at slightly different speeds?
$-\omega_{n}(1) \nu k_{n} \rightarrow$ DISPERSION
- Wave equation in dispersive media
- Phase velocity \rightarrow velocity of a single crest of the wave with average wave vector, $\bar{K} \rightarrow$
- Group velocity \rightarrow velocity of the slow envelope velocity of energy transport $\boldsymbol{\rightarrow}$

$$
v_{g}=\frac{d \omega}{d k}
$$

Corrections/comments on today's lecture

- Formula for approximation of ω_{m} was written incorrectly on the board; the correct version is

$$
\begin{aligned}
\omega^{2}=c^{2} k_{m}^{2}\left(1+\alpha k_{m}^{2}\right) & \Rightarrow \omega=c k_{m} \sqrt{1+\alpha k_{m}^{2}} \\
& \omega \approx c k_{m}\left(1+\frac{1}{2} \alpha k_{m}^{2}\right)
\end{aligned}
$$

- Where does the equation for a stiff string come from?
- For a derivation, see for example, Fetter and Walecka, "Theoretical mechanics of Particles and Continua," page 221

