Physics 8.03
 Vibrations and Waves

Lecture 10
Fourier Analysis

Last time:

- Wave equation in 2-D

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}} \xi(x, y, t)+\frac{\partial^{2}}{\partial y^{2}} \xi(x, y, t)=\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}} \xi(x, y, t) \\
& \Rightarrow k^{2}=k_{x}^{2}+k_{y}^{2}=\left(\frac{n_{x} \pi}{L_{x}}\right)^{2}+\left(\frac{n_{y} \pi}{L_{y}}\right)^{2}
\end{aligned}
$$

- Arbitrary motion $\boldsymbol{>}$

Superposition of normal modes

$$
y(x, t)=\sum_{m=1}^{\infty} A_{m} \sin \left(\frac{m \pi}{L} x\right) \cos \left(\omega_{m} t+\beta\right)
$$

$$
A_{m}=\frac{2}{L} \int_{0}^{L} y(x, t=0) \sin \left(\frac{m \pi x}{L}\right) d x
$$

- Fourier analysis continued
- Time evolution added

Fourier expansion recipe

- Start with superposition of all possible modes
- Determine the simplest basis functions using
- Boundary conditions
- Symmetry
- Initial condition
- Determine the Fourier coefficients, A_{n}, at $t=0$ using initial deformation $y(x, t=0)$ and orthogonal functions
- Add the time-dependence

