Hints to Assignment \#1 -- 8.022

(10 points) [1] Forces and Work

- Select your system of units. "A" will have different units in different systems. Will "A" have the same dimensions in the SI and CGS systems?
- $d \mathbf{r}=\mathrm{dx} \mathrm{i}^{\wedge}+\mathrm{dy} \mathrm{j}^{\wedge}$. Form $\mathrm{dW}=\mathbf{F d r}$ and integrate over each of the 4 pieces of the square.
Is this force conservative?

(10 points) [2] Force from potential

As you realized this should actually read force from potential energy. If U were the potential could we come up with the force? (No!).

- Start by reading p. 9 and p. 10 of your handout $\# 1$.
- You may find the definition of the gradient operator in p. 15 of your handout\#1. Watch out this is in cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
- The third potential energy is given in polar (or cylindrical?) coordinates. You have three options here:
- find out the expression for the gradient in polar coordinates in your nearest math handbook,
- express r and phi in terms of x and y and use your cartesian definition, or
- work out the general methodology to change variables; we will use MANY TIMES during this course the expression of the gradient in cartesian, polar, cylindrical and spherical coordinates.

(10 points) [3] Relative strength of the Electrostatic and Gravitational force (Purcell 1.1)

- Both force laws are $1 / \mathrm{r}^{\wedge} 2$... Take their ratios.
- Could gravity account for the stability of nucleus?

(15 points) [4] Two charged volley balls (Purcell 1.3)

- Mr. Coulomb prescribed how to find Q from F_e, thus you have to find F_e.
- Pick one ball and identify all the forces (vectors) acting on it. Define a coordinate system and analyze them.
- Can you propose an experiment to verify Coulomb's law based on this idea??

(10 points) [5] Charges on corners of square (Purcell 1.4)

- Let me tell you one thing, the future is in the superposition.
- Each corner charge feels 4 forces as prescribed by Mr. Coulomb.
- Draw a picture, identify the force VECTORS and request to vanish. A bit of trigonometry won't be bad.

(10 points) [6] A charge semicircle (Purcell 1.4)

- Coulomb's law applies to "discrete" charges. Use mathematics to discretize the given continous line charge density: lambda $=\mathrm{dq} / \mathrm{ds}$ where ds is the infinitesimal length of the arc.
- Draw \mathbf{E} (vector!) at the center due to an arbitrary dq, this is by definition the $\mathrm{d} \mathbf{E}$ (vector!).
- Superposition=Integration (I told you it is the future).
- Watch out as $\mathrm{d} \mathbf{E}$ changes directions for the various dq.

(10 points) [7] Electric field by two point charges (Purcell 1.11)

- The superposition for discrete charges implies that the field \mathbf{E} at any point along the axis x will be the vector sum of the fields due to q1 and q2,i.e, $\mathbf{E}=\mathbf{E} 1+\mathbf{E} 2$. Notice that if we write $\mathbf{E}(\mathrm{x})=\mathrm{E}(\mathrm{x}) \mathbf{i}, \mathrm{E}(\mathrm{x})$ carries also the sign (+/-) of the field which we can straightforwardly establish that it lies along \mathbf{i}.
- You will find two solutions of which only one is accepted... which one and why?
- Can there be a point of $\mathrm{E}=0$ anywhere between two charges of opposite sign? How about between two charges of the same sign?
- Try to plot $\mathrm{E}(\mathrm{x})$: identify the three regions in x and study first qualitatively how $E(x)$ behaves at + infinity or on the charges.

(10 points) [8] Electric field of finite charged rod (Purcell 1.24)

This is the same as problem [6] except the geometry of the continuous charge distribution. Remember, \mathbf{E} is a vector and in order to perform vector arithmetics you need to introduce a basis system and components of \mathbf{E} onto it.

(15 points) [9] Electric field of a hairpin (Purcell 1.26)

- Convince yourself that $b=(B C) \cos (t h e t a)$ and $y=(B C) \tan ($ theta $)$.
- You will need to express dy/d(theta) in terms of theta.
- Express the field at C as the superposition of the fields due to A and B .

