Massachusetts Institute of Technology
 Department of Physics
 Physics 8.022-Fall 2002

Assignment \#9
Biot-Savart and Ampere's Laws
Faraday's Law of Induction
Mutual and Self Inductance

Reading Purcell: Chapters 6 and 7.

Problem Set \#9

Work on all problems. Not all problems receive equal points. Total points for this set is 100 .

- (15 points) [1] Hollow wire.

A straight wire (along the z axis) of radius R carries current density $\vec{J}=J_{0} \hat{k}$. A cylindrical hole or radius α parallel to the axis of the wire is drilled at distance b from it as shown in figure (viewed from the top). Show that the field anywhere inside the hole is uniform and given by $\vec{B}=\frac{2 \pi J_{0}}{c} \hat{k} \times \vec{b}$. If I is the total current flowing through the hollow wire, express B in terms of I, b, R and $\boldsymbol{\alpha}$.
(15 points) [2] Emf in a loop.
A pair of parallel wires carries equal and opposite currents I. A closed rectangular wire loop of dimensions h and w is placed in the plane of them and as shown in the figure.

- Find the magnetic flux through the loop.
- Now allow I to vary with time at a slow enough rate $d I / d t$. Find the induced $E m f$ in the loop.

- (10 points) [3] Emf in a rod.

A uniform magnetic field b fills a cylindrical volume of radius R. A metal rod of length l is placed as shown. If B is changing at the rate $\frac{d B}{d t}$ show that the $e m f$ that is produced by the changing magnetic field and that acts between the ends of the rod is given by $\frac{d B}{d t} \frac{l}{2 c} \sqrt{R^{2}-(l / 2)^{2}}$.

- (10 points) [4] Purcell Problem 7.14 (p.289): Crossbar in a magnetic field.
- (10 points) [5] Purcell Problem 7.18 (p.290): Charge moved by electromotive force.
- (15 points) [6] Purcell Problem 7.22 (p.291): Angular momentum and electromagnetic fields.
- (10 points) [7] Purcell Problem 7.21 (p.291): Mutual inductance of coaxial solenoids.
- (15 points) [8] Coaxial conductors.

Show that the self-inductance per unit length of a transmission line consisting of two concentric conducting tubes with radii R_{1} and R_{2} is $\frac{2}{c^{2}} \ln \frac{R_{2}}{R_{1}}$. The current flows along one of the tubes and an equal and opposite current flows back along the other thus completing a circuit. The currents are uniformly distributed over the surfaces of each tube. Hint:calculate the magnetic flux coupling through a rectangle of length l 'hanging' from the top of the outer conductor as shown in the figure.

Erotokritos Katsavounidis

