Massachusetts Institute of Technology
 Department of Physics
 Physics 8.022-Fall 2002

Assignment \#4
Conductors, Capacitance
Current, Resistance, Ohm's Law

Reading Purcell Chapter 3 and 4.

Problem Set \#4

Work on all problems. Not all problems receive equal points. Total points for this set is 100 .

- (20 points) [1] Energy of a conductor in a capacitor.

Two flat square metal plates with sides of length L are arranged parallel to each other with a separation of S where $S \ll L$. This assumption allows you to neglect the fringing effects due to the finite size of the plates. A charge +Q is moved from the top plate to the bottom. A third, uncharged, conducting plate of the same size with thickness $\frac{S}{2}$ is slid between the other two to a depth of x, maintaining the same spacing of $\frac{S}{4}$ between its surface and that of the other two.

- What are the surface charge densities σ_{W} and σ_{N} on the lower plate adjacent to the wide and narrow gaps?
- What is the electric field in the wide and narrow gaps?
- What is the capacitance of the system?
- How much energy is stored in the electric field?
- What force must be exerted on the middle plate to keep it from moving?
- (15 points) [2] Purcell Problem 3.6 (p.114): Line charge near a conducting plane.
- (15 points) [3] Purcell Problem 3.9 (p.115): Point charges and conducting plane.
- (20 points) [4] Image on a sphere.

Find the image (location and magnitude) of a point charge of strength $+Q$ located at distance l from the center outside of a grounded conducting sphere. Assume the radius of the sphere is a (clearly, $a<l$). Prove that the potential on the sphere due to the charge $+Q$ and its image is indeed zero.

- (15 points) [5] Purcell Problem 3.23 (p.117): Cylindrical capacitor.
- (15 points) [6] Capacitors in Series and in Parallel.

- Derive an expression for the equivalent capacitance of two capacitors C_{1} and C_{2} connected in series and in parallel (express in terms of C_{1} and C_{2}).
- Assume capacitors C_{1}, C_{2}, C_{3} and C_{4} are connected as shown in the figure. What is their equivalent capacitance when the switch S is open (as shown)? Find the charge on each of the capacitor plates when the switch is open and when it is closed. Express all your answers in terms of $C_{1}, C_{2}, C_{3}, C_{4}$ and V

Erotokritos Katsavounidis

