Massachusetts Institute of Technology
 Department of Physics
 Physics 8.022-Fall 2002

Assignment \#3

Div, Curl, Laplace's and Poisson's Equations
 Conductors, Capacitance

Reading Purcell Chapter 2 and 3.

Problem Set \#3

Work on all problems. Not all problems receive equal points. Total points for this set is 100 .

- (10 points) [1] Useful identities:

If u is a scalar function and \mathbf{V} is a vector function, show that:
(a) $\nabla(\mathrm{uV})=\mathrm{u} \nabla \mathbf{V}+(\nabla \mathrm{u}) \mathbf{V}$ and (b) $\nabla \times(\mathrm{uV})=\mathrm{u} \nabla \times \mathbf{V}+(\nabla \mathrm{u}) \times \mathbf{V}$.

- (15 points) [2] Purcell Problem 3.3 (p.113): Charges near a conducting plane.
- (15 points) [3] Purcell Problem 3.4 (p.113): More charges near a conducting plane.
- (15 points) [4] Purcell Problem 3.5 (p.114): And even more charges near a conducting plane.
- (15 points) [5] Purcell Problem 3.10 (p.115): Spherical capacitor.
- (15 points) [6] Purcell Problem 3.16 (p.116): Electric force on a capacitor.
- (15 points) [7] Purcell Problem 3.17 (p.116): Design of a spherical capacitor.

