RISK-INFORMED OPERATIONAL DECISION MANAGEMENT

RELIABILITY AND AVAILABILITY

Michael W. Golay

Professor of Nuclear Engineering Massachusetts Institute of Technology

Component States and Populations Consider a population, N _{so} , of success failed components placed into service	Successful – N_s Failure Re Failed – N_f ful components and, N_{fo} , at the same time	pair
failed components placed into service	at the same time.	
At time, t, progresses, some of these c of the failed components will be repair	omponents will fail and s red and returned to servic	some ce.
At time, t, progresses, some of these c of the failed components will be repair The expected populations of compone	omponents will fail and s red and returned to servic ents vary in time as:	some ce.
At time, t, progresses, some of these c of the failed components will be repair The expected populations of compone Expected Successful Components:	components will fail and s red and returned to servic ents vary in time as: $N_s = N_o P_s(t)$	some ce.
At time, t, progresses, some of these c of the failed components will be repair The expected populations of compone Expected Successful Components: Expected Failed Components:	components will fail and s red and returned to servic ents vary in time as: $N_{s} = N_{o}P_{s}(t)$ $N_{f} = N_{o}P_{f}(t)$	some ce.
At time, t, progresses, some of these c of the failed components will be repair The expected populations of compone Expected Successful Components: Expected Failed Components: Probability Conservation:	components will fail and s red and returned to servic ents vary in time as: $N_{s} = N_{o}P_{s}(t)$ $N_{f} = N_{o}P_{f}(t)$ $P_{s}(t) + P_{f}(t) = 1$	and and

COMPONENT FAILURE PROBABILITY

Component (Conditional) Failure Rate, $\lambda(t)$,

$$\frac{1}{P_{s}(t)}\frac{dP_{s}(t)}{dt} = \frac{1}{N_{s}(t)}\frac{dN_{s}(t)}{dt} = -\lambda(t)$$

where

 $P_s(t)$ = probability that an individual component will be successful at time, t;

 $N_s(t)$ = expected number of components surviving at time, t (note that $N_s(t=0) = N_{so}$);

 $\lambda(t)$ = time-dependent (conditional) failure rate function.

Mean-Time-To-Failure (MTTF) = $1/\lambda = \tau_f$,

for λ = constant.

COMPONENT REPAIR PROBABILITY

Component Repair Coefficient, $\mu(t)$,

$$\frac{1}{P_f(t)}\frac{dP_f(t)}{dt} = \frac{1}{N_f(t)}\frac{dN_f(t)}{dt} = -\mu(t)$$

where

- $P_{f}(t)$ = probability that an individual component will be failed at time, t;
- $N_{f}(t)$ = expected number of components failed at time, t (note that $N_{f}(t=0) = N_{fo}$);
- $\mu(t)$ = time-dependent (conditional) repair rate function.

Mean-Time-To-Repair (MTTR) = $1/\mu = \tau_R$,

for μ = constant.

Combined Repair and Failure

$$\frac{dN_s}{dt} = -\lambda N_s(t) + \mu N_f(t)$$
$$\frac{dN_f}{dt} = \lambda N_s(t) - \mu N_f(t)$$

can express as matrix equation

$$\frac{\mathrm{d}\overline{\mathrm{N}}}{\mathrm{d}t} = \mathrm{M}\overline{\mathrm{N}} \ ,$$

where

$$\overline{N} = \begin{pmatrix} N_s(t) \\ N_f(t) \end{pmatrix}$$
, and $M = \begin{pmatrix} -\lambda & \mu \\ \lambda & -\mu \end{pmatrix}$.

This is the relationship for a Markov process, where for a single component: $\overline{1}$

$$\frac{\mathrm{d}\mathbf{P}(t)}{\mathrm{d}t} = \mathbf{M}\overline{\mathbf{P}}(t) \; ,$$

where

$$\overline{P}(t)$$
 = state vector of the component = $\begin{pmatrix} P_s(t) \\ P_f(t) \end{pmatrix}$

For initial condition $P_s(t=0) = 1$ and $P_f(t=0) = 0$,

Solution is:

$$\begin{split} P_{s}(t) &= \frac{\mu}{\lambda + \mu} + \left(\frac{\lambda}{\lambda + \mu}\right) e^{-(\lambda + \mu)t} \\ P_{f}(t) &= \left(\frac{\lambda}{\lambda + \mu}\right) \left[1 - e^{-(\lambda + \mu)t}\right]. \end{split}$$

Asymptotic result: (i.e., as $t \rightarrow \infty$)

COMPONENT CYCLE: RUN-TO-FAILURE, REPAIR AND RETURN-TO-SERVICE

Consider that total mean cycle time is τ_{cycle} for:

EFFECTS OF COMPONENT TESTING AND INSPECTION

BENEFICIAL

- Verify That Component Is Operable
- Reveal Failures That Can Be Repaired
- Exercise Component and Maintain Operability
- Maintain Skills of Testing Team

HARMFUL

- Removal From Service Can Result in Complete Component Unavailability
- Wear and Tear Due to Testing (Wear, Fatigue, Corrosion, ...)
- Introduction of New Defects (e.g., via Damage During Inspection, Fuel Depletion)
- Acceleration of Dependent Failures
- Damage or Degradation of Component via Incorrect Restoration to Service
- Human Error Can Cause Wrong Component to Be Removed From Service

POST-TEST UNAVAILABILITY

CAUSED BY

- Failures Requiring Repairs, Caused by Tests
- Defects Introduced by Tests, Resulting in Later Failures
- Incorrect Component (and Supporting System) Disengagement, Re-Engagement
- Incorrect Component Having Been Tested

MEAN AVAILABILITY, $\langle Q \rangle$, UNDER DIFFERENT COMBINATIONS OF TESTING AND REPAIR: CASES TO BE CONSIDERED (λ = CONSTANT)

CASES

- 1. Asymptotic Component Unavailability as Function of μ , λ
- 2. Mean Component Unavailability During Standby Interval
- 3. Cycle Mean Unavailability Due to
 - Defects randomly introduced during standby,
 - Unavailability due to testing and repairs
- 4. Cycle Mean Unavailability Due to
 - Pre-existing defects,
 - Defects introduced during standby, and
 - Unavailability due to testing and repairs
- 5. Standby Interval That Minimizes <Q>

CASE 1. ASYMPTOTIC AVAILABILITY WHEN FAILURES ARE MONITORED AND REPAIRED

CASE 2. MEAN UNAVAILABILITY DURING STANDBY PERIOD, t_s

During Standby: $Q(t) = P_f(t) = 1 - e^{-\lambda t_s} \approx 1 - (1 - \lambda t_s)$

CASE 3. MEAN CYCLE UNAVAILABILITY, INCLUDING TESTING AND REPAIR

For the Entire Testing Cycle Can Evaluate Expected Unavailability, <Q>, Due to Defects Introduced Randomly During Standby and Unavailability Due to Testing and Repairs as:

CASE 3. MEAN CYCLE UNAVAILABILITY (continued)

DOWNTIME: $t_D = t_{D_s} + t_{D_t} + t_{D_R}$ During Standby: $t_{D_s} = \frac{\lambda t_s^2}{2}$ During Testing: $t_{D_t} = t_t$ During Repair: $t_{D_R} = f_R t_R$ f_R = repair frequency, the fraction of tests for which a repair is

required

CYCLE TIME: $t_c = t_s + t_t + t_R$ cycle standby testing repair

AVERAGE UNAVAILABILITY:

$$\left\langle Q\right\rangle = \frac{t_{D}}{t_{c}} = \frac{1}{t_{c}} * \left(\frac{\lambda t_{s}^{2}}{2} + t_{t} + f_{R}t_{R}\right)$$

CASE 4. MEAN CYCLE UNAVAILABILITY, INCLUDING PRE-EXISTING UNAVAILABILITY, Q₀

Evaluate Expected System Unavailability, <Q>, Due to

- Pre-Existing Defects
- Defects Introduced Randomly During Standby and
- Unavailability Due to Testing and Repairs as:

CASE 4. MEAN CYCLE UNAVAILABILITY, INCLUDING PRE-EXISTING UNAVAILABILITY, Q_0 (continued)

COMBINED CASE OF EFFECT UPON STANDBY SYSTEM FAILURE OF PRE-EXISTING FAULT AND RANDOMLY INTRODUCED FAULT

- I = Pre-existing fault event
- R = Random fault event
- F = I+R = Component fault

$$P(F) = P(I + R) = P(I) + P(R) - P(I) \cdot P(R)$$

$$P(F) = Q_o + \frac{\lambda t_s}{2} - Q_o \cdot \frac{\lambda t_s}{2}$$
$$P(F) = Q_o + (1 - Q_o)\frac{\lambda t_s}{2}$$

CASE 5. STANDBY INTERVAL THAT MINIMIZES <Q>

For a Good System:

tem:
$$t_{t} + f_{R}t_{R} \ll t_{s}$$
$$Q_{o} \ll 1$$
$$\Rightarrow \langle Q \rangle \approx \frac{1}{t_{c}} \left(Q_{o}t_{s} + \frac{\lambda}{2}t_{s}^{2} + t_{t} + f_{R}t_{R} \right)$$

The value of t_s which minimizes $\langle Q \rangle$, t_s^* , is obtained from $\frac{\partial \langle Q \rangle}{\partial t_s} = 0$ as

$$\mathbf{t}_{\mathrm{s}}^{*} = \left[\frac{2(\mathbf{t}_{\mathrm{t}} + \mathbf{f}_{\mathrm{R}}\mathbf{t}_{\mathrm{R}})}{\lambda}\right]^{1/2} = \left[2\tau_{\mathrm{f}}(\mathbf{t}_{\mathrm{t}} + \mathbf{f}_{\mathrm{R}}\mathbf{t}_{\mathrm{R}})\right]^{1/2}$$

 $\tau_{\rm f}$ = random defects contribution

 $(t_t + f_R t_R)$ = testing and repair contribution

0

CASE 5. STANDBY INTERVAL THAT MINIMIZES <U>

For a Good System: $t_{t} + f_{R}t_{R} \ll t_{s}$ $U_{o} \ll 1$ $\Rightarrow \langle U \rangle \approx \frac{1}{t_{c}} \Big(U_{o}t_{s} + \frac{\lambda}{2}t_{s}^{2} + t_{t} + f_{R}t_{R} \Big)$ The value of t_s which minimizes $\langle U \rangle$, t_{s}^{*} , is obtained from $\frac{\partial \langle U \rangle}{\partial t_{s}} = 0$ as $t_{s}^{*} = \Big[\frac{2(t_{t} + f_{R}t_{R})}{\lambda} \Big]^{1/2} = \Big[2\tau_{f}(t_{t} + f_{R}t_{R}) \Big]^{1/2}$ $\tau_{f} = \text{random defects contribution}$ $(t_{t} + f_{R}t_{R}) = \text{testing and repair contribution}$

 $\overline{T_{s}^{*}}$

T_s

T

UNAVAILABILITY

- Failure density $f_T(t) = \lambda e^{-\lambda t}$ $t \ge 0$
- Cumulative Density Function (CDF): $F_T(t) = P(T \le t) = \int_0^t f_T(t) dt$

• Unavailability U(t): probability that system is down at time t,

$$U(t) = F_{T}(t) = \int_{0}^{t} f_{T}(t)dt = 1 - e^{-\lambda t} \approx 1 - (1 - \lambda t)$$
$$U(t) \approx \lambda t$$

MEAN UNAVAILABILITY DURING STANDBY PERIOD, t_s

MEAN CYCLE UNAVAILABILITY INCLUDING PRE-EXISTING UNAVAILABILITY, U₀

STANDBY INTERVAL,
$$t_s^{*}$$
, THAT
MINIMIZES
• $=\frac{1}{t_c} \times \left[\left(U_0 t_s + (1-U_0) \frac{\lambda}{2} t_s^2 \right) + t_t + f_R t_R \right]$
• For a good system $\begin{cases} t_t + f_R t_R << t_s \\ U_0 <<1 \end{cases} \Rightarrow \begin{cases} t_c = t_s + t_t + t_R \approx t_s \\ (1-U_0) \approx 1 \end{cases}$
 $\Rightarrow \approx \frac{1}{t_s} \times \left[\left(U_0 t + \frac{\lambda}{2} t_s^2 \right) + t_t + f_R t_R \right]$
 $\frac{\partial }{\partial t_s} (t_s^*) = 0$
 $\frac{\partial }{\partial t_s} (t_s^*) = \frac{\lambda}{2} - (t_t + f_R t_R) \times \frac{1}{t_s^{*2}} = 0$
 $\Rightarrow t_s^* = \left[\frac{2(t_t + f_R t_R)}{\lambda} \right]^{1/2}$

 $(t_t+f_Rt_R)$ = testing and repair contribution

MEAN UNAVAILABILITY, EXAMPLES

• Mean unavailability during standby period t_s:

$$t_{s} = 10^{3} hr, \lambda = 10^{-4} hr^{-1}$$

< U >= $\lambda \frac{t_{s}}{2} = 10^{-4} \times \frac{10^{3}}{2} = 0.05$

• Mean cycle unavailability, including testing and repair:

$$t_{s} = 10^{3} \text{ hr}, \quad \lambda = 10^{-4} \text{ hr}^{-1}, \quad t_{t} = 25 \text{ hr}, \quad t_{R} = 60 \text{ hr}, \quad f_{R} = 0.01$$

$$< U > = \frac{1}{t_{c}} \left[\frac{\lambda t_{s}^{2}}{2} + t_{t} + f_{R} t_{R} \right]$$

$$= \frac{1}{10^{3} + 25 + 60} \left[\frac{10^{-4} \times 10^{3 \times 2}}{2} + 25 + 0.01 \times 60 \right] \approx 0.07$$

MEAN UNAVAILABILITY, EXAMPLES (continued)

• Mean cycle unavailability including U₀:

$$\begin{aligned} t_{s} &= 10^{3} \text{ hr}, \quad \lambda = 10^{-4} \text{ hr}^{-1}, \quad t_{t} = 25 \text{ hr}, \quad t_{R} = 60 \text{ hr}, \quad f_{R} = 0.01, \quad U_{0} = 0.02 \\ &< U > = \frac{1}{t_{c}} \left[U_{0} t_{s} + (1 - U_{0}) \frac{\lambda t_{s}^{2}}{2} + t_{t} + f_{R} t_{R} \right] \\ &= \frac{1}{10^{3} + 25 + 60} \left[0.02 \times 10^{3} + (1 - 0.02) \frac{10^{-4} \times 10^{3 \times 2}}{2} + 25 + 0.01 \times 60 \right] \approx 0.087 \end{aligned}$$

• Optimum standby interval t_s:

$$\mathbf{t}_{s}^{*} = \left[\frac{2(\mathbf{t}_{t} + \mathbf{f}_{R}\mathbf{t}_{R})}{\lambda}\right]^{1/2} = \left[\frac{2(25 + 0.01 \times 60)}{10^{-4}}\right]^{1/2} \approx 715.54 \text{ hr}$$

EXAMINATION OF SEQUENCING OF TESTS

EXAMPLE OF TWO PARALLEL INDENTICAL COMPONENTS

A) Successive Testing

B) Staggered Testing

FOR REDUNDANT SYSTEMS CAN COMBINE INDIVIDUAL COMPONENT UNAVAILABILITY VALUES TO OBTAIN OVERALL SYSTEM UNAVAILABILITY, CONSIDER A 1/2 PARALLEL SYTEM (e.g., Two Parallel EDGs), WHERE SUCCESS OF ONE COMPONENT IS SUFFICIENT FOR SYSTEM SUCCESS

 $Q_{system} = Q_A \cdot Q_B$ (ignoring dependencies)

In Standby:

$$Q_{s}(t) = \left(1 - e^{-\lambda_{A}t_{A}}\right) \left(1 - e^{-\lambda_{B}t_{B}}\right) \approx \lambda_{A}t_{A} \cdot \lambda_{B}t_{B} = \lambda_{A}\lambda_{B}t_{A}t_{B}$$

 t_A = time that component A has been on standby t_B = time that component B has been on standby

Note, effects of downtime for repair omitted from this analysis.

FOR REDUNDANT SYSTEMS CAN COMBINE INDIVIDUAL COMPONENT UNAVAILABILITY VALUES TO OBTAIN OVERALL SYSTEM UNAVAILABILITY, CONSIDER A 1/2 PARALLEL SYTEM (e.g., Two Parallel EDGs), WHERE SUCCESS OF ONE COMPONENT IS SUFFICIENT FOR SYSTEM SUCCESS (continued)

With Unit A in Testing: $Q_s = 1 \cdot (1 - e^{-\lambda_B t_B}) \approx \lambda_B t_B$

With Unit B in Testing:

$$Q_{s} = \left(1 - e^{-\lambda_{A}t_{A}}\right) \cdot 1 \approx \lambda_{A}t_{A}$$

With Unit A in Repair: $Q_s = f_{R_A} \left(1 - e^{-\lambda_B t_B} \right) \approx f_{R_A} \cdot \lambda_B t_B$

where f_{R_A} = repair frequency of Unit A

With Unit B in Repair: $Q_s = f_{R_B} (1 - e^{-\lambda_A t_A}) \approx f_{R_B} \cdot \lambda_A t_A$ where f_{R_B} = repair frequency of Unit B

COMPARISON OF MAXIMUM AND AVERAGE VALUES OF Q, FIRST CYCLE OF TESTING

Successive Testing:

Staggered Testing:

$$\lambda_{\rm B}(\tau_1 + t_t) \approx \lambda_{\rm B}\tau_1$$
$$\lambda_{\rm B}\left(\frac{\tau_1}{2} + t_t\right) \approx \lambda_{\rm B}\frac{\tau_1}{2}$$

Q_{max}

$$"_{cycle}"$$

 $\approx \lambda_{B}t_{t}$

Successive Testing:

Staggered Testing:

 $\approx \left(\lambda_{\rm A} + \lambda_{\rm B}\right) \frac{t_{\rm t}}{3}$

HUMAN ERRORS ARE TYPICALLY MOST IMPORTANT

Also, taking into account human errors committed during tests and repair and failure modes not tested previously.

 Q_o = unavailability due to defects existing at the start of the next testing cycle

$$Q_0 = Q_U + Q_H$$
, where

 Q_U = unavailability due to failure modes not interrogated during the tests performed, and those activated upon demand

$$Q_{\rm H} = \lambda_t t_t + \lambda_R t_R$$
, and

- λ_t = rate of introduction of defects due to human errors during tests (e.g., system realignment errors), hr⁻¹
- λ_R = rate of introduction of defects due to human errors during repairs (e.g., incorrectly installed gaskets, tools or debris left within a component), hr⁻¹