REAL AVAILABILITY 2005

Common Cause Failures:

Failures of multiple components involving a shared dependency

KEY POINTS OF THE SESSION

Component Arrangements
Common Cause Failures

B Factor Method

Data Center Common Cause Failures
Dual Path and Dual Cord
Fault Tree Analysis of Single-Cord, Dual Path, and Dual Cord Service

COMPONENT ARRANGEMENTS

Parallel: Success of One Component is Sufficient for System Success (e.g., backup power sources)
$\mathrm{P}_{\text {system }}^{\text {success }}=\underset{\mathrm{Q}_{\text {system }}}{1-\prod_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}, \quad \mathrm{q}_{\mathrm{i}}=\text { Failure Probability of } \mathrm{i}-\text { th Component }}$
Three Component System
 Failure Success

$$
\mathrm{S}=\mathrm{A}+\mathrm{B}+\mathrm{C}=1-\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}}
$$

(Note: Adding Components Increases $\mathrm{P}_{\substack{\text { system } \\ \text { success }}}$)

COMPONENT ARRANGEMENTS

Series: Success of Every Component is Necessary for System Success (e.g., the links of a chain)
$\underset{\substack{\text { system } \\ \text { sucess }}}{\mathrm{P}_{\mathrm{i}}}=\prod_{\mathrm{i}}, \quad \mathrm{p}_{\mathrm{i}}=$ Success Probability of $\mathrm{i}-$ th Component
(Note: Adding Components Decreases $\mathrm{P}_{\substack{\text { system } \\ \text { success }}}$)
Three Component
Series

$$
\mathrm{S}=\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}=1-(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}})
$$

EXAMPLE OF COMMON CAUSE FAILURE SOURCES POTENTIALLY ABLE TO AFFECT DATA CENTERS SERIOUSLY

Support System	Environmental (Exceeding Allowable Envelope)	Structural	External
Fuel Quantity	Temperature	Manufacturing	Earthquake
Fuel Quality	Pressure	Flaw	Hurricane
Cooling	Vibration	Faulty Maintenance	Tornado
Lubrication	Noise	Procedure	Flood
Ventilation	Air Quality	Component	Explosion
Human Error	Electromagnetic Pulse	Design Error	Labor Strike
Control Power			Terrorist
Interfacing Switchgear			Action

TYPES OF COMMON CAUSE FAILURES AND THEIR ASPECTS

	DEPENDENT	STRUCTURAL*	ENVIRONMENTAL	EXTERNAL*
Description of Failure Cause	Failure of an interfacing system, action or component	A common material or design flaw which simultaneously affects all components population	A change in the operational environment which affects all members of a component population simultaneously	An event originating outside the system which affects all members of a component population simultaneously
Hardware Examples	- Loss of electrical power - A manufacturer provides defective replacement parts that are installed in all components of a given class	- Faulty materials - Aging - Fatigue - Improperly cured materials - Manufacturing flaw	- High pressure - High temperature - Vibration	
Human Examples	- Following a mistaken leader - An erroneous maintenance procedure is repeated for all components of a given class	- Incorrect training - Poor management - Poor motivation - Low pay	- Common cause psf's - New disease - Hunger - Fear - Noise - Radiation in control room	- Explosion - Toxic substance - Severe Weather - Earthquake - Concern for families
Easy to Anticipate?:				
Component failure	High	Very Low	Medium	Medium
Human error	Medium	Very Low	Medium	Medium
Easy to Mitigate?: Component failure	High, if system designed for mitigation	Very Low, hard to design for mitigation	Low	Low
Human error	High, if feedback provided to identify the error promptly	Very Low, the factors making CCF likely also discourage being prepared for correction	Low	Low

[^0]
COMMON CAUSE (i.e., DEPENDENT) FAILURES

Let CC Be a Common Cause Failure Event Causing Dependent Failures of Components A, B, C and D. The Component A Can Fail By

1. Independent Failure, Event A_{i}, Prob. $=q_{A}$
2. Dependent Failure, Event ($\mathrm{A}_{\mathrm{c}}{ }^{\cdot} \mathrm{CC}$), Prob. $=$ Prob.[A $\left.\mathrm{A}_{\mathrm{c}} \mathrm{CC}\right] \cdot \operatorname{Prob} .(\mathrm{CC})=$ Prob. (CC)

Prob. $\left[\right.$ Failure of Component A] $=\operatorname{Prob} .\left(\mathrm{A}_{\mathrm{i}}\right)+\operatorname{Prob} .\left(\mathrm{A}_{\mathrm{c}} \cdot \mathrm{CC}\right)$
$-\underbrace{\text { Prob. }\left(\mathrm{A}_{\mathrm{i}}\right) \cdot \text { Prob. }\left(\mathrm{A}_{\mathrm{c}} \cdot \mathrm{CC}\right)}_{\text {Neglect, as Usually is of }}$
Small Value

COMMON CAUSE (i.e., DEPENDENT) FAILURES

Consider Failure of Four Components: A, B, C, D
Prob.[4 Component Failures] $=$ Prob. $[A \cdot B \cdot C \cdot D]$

$$
\left.=\operatorname{Prob} \cdot\left[\mathrm{A} \mid\left(\mathrm{B} \cdot \mathrm{C}^{\cdot} \cdot \mathrm{D}\right)\right]_{\operatorname{Prob} .[\mathrm{B} \mid(\mathrm{C} \cdot \mathrm{D})}\right]_{\operatorname{Prob}} .[\mathrm{C} \mid \mathrm{D}]_{\operatorname{Prob} .(\mathrm{D})}
$$

Now Consider Events A, B, C, D Each to Have an Independent Version and a Version Dependent Upon Event CC, (Prob. $\left.(\mathrm{CC})=\mathrm{q}_{\mathrm{cc}}\right)$

Then Prob. $(A \cdot B \cdot C \cdot D) \cong q_{A} q_{B} q_{C} q_{D}$
$+\operatorname{Prob} \cdot\left[\mathrm{A}_{\mathrm{c}} \mid\left(\mathrm{B}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{c}} \cdot \mathrm{D}_{\mathrm{c}}\right)\right]_{\text {Prob. }}\left[\mathrm{B}_{\mathrm{c}} \mid\left(\mathrm{C}_{\mathrm{c}} \cdot \mathrm{D}_{\mathrm{c}} \cdot \mathrm{CC}\right)\right]_{\text {Prob }}\left[\mathrm{C}_{\mathrm{c}} \mid\left(\mathrm{D}_{\mathrm{c}} \cdot \mathrm{CC}\right)\right]$

- Prob. $\left(\mathrm{D}_{\mathrm{c}} \mid \mathrm{CC}\right)_{\text {Prob. }}$ (CC) Prob. $\left(\mathrm{D}_{\mathrm{c}} \cdot \mathrm{CC}\right)$
Or

COMMON CAUSE (i.e., DEPENDENT) FAILURES

Often $\quad \operatorname{Order}\left(q_{C C}\right)=\operatorname{Order}\left(q_{A, B, C, D}\right) \gg q_{A} q_{B} q_{C} q_{D}$

$$
\Rightarrow \operatorname{Prob} .(\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}) \cong \mathrm{q}_{\mathrm{CC}}
$$

In This Situation Redundancy of Components is of Little Benefit in Reducing Values of Prob. ($\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C} \cdot \mathrm{D}$)

Then Prob. $(A \cdot B \cdot C \cdot D) \cong \operatorname{Prob} .\left(A_{i} \cdot B_{i} \cdot C_{i} \cdot D_{i}\right)+\operatorname{Prob} .\left(A_{c c} \cdot B_{c c} \cdot C_{c c} \cdot D_{c c} \cdot C C\right)$
i + independent failure
$\mathrm{c}+$ dependent, or common cause failure

COMPONENT ARRANGEMENTS

COMMON CAUSE FAILURE - β FACTOR METHOD

- N components, each of which has an independent failure probability q_{I};
- Common cause failure factor β; Let C be the event that common failure happens, $P(C)=\beta q_{I}$;
- If C happens, none of the N components can succeed;

NOTE: Sometimes sharing a common cause among N components will result in $\mathrm{m}(\mathrm{m} \leq \mathrm{N})$ failing upon occurrence of the common cause.

NO COMMON CAUSE FAILURE

If there is no common cause failure, i.e. $\beta=0$.
With $\mathrm{N}=10$, we obtain the following binomial distribution for X - the number of successful components.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=\mathrm{k})=\binom{10}{\mathrm{k}}\left(1-\mathrm{q}_{\mathrm{I}}\right)^{\mathrm{k}} \mathrm{q}_{\mathrm{I}}^{10-\mathrm{k}}, \\
& \mathrm{k}=0,1,2, \ldots, 10
\end{aligned}
$$

COMMON CAUSE FAILURE: ; FACTOR METHOD
 (continued)

- If $\beta \neq 0$, X has the following distribution:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=0)=\mathrm{P}(\mathrm{X}=0 \mid \mathrm{C}) \mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{X}=0 \mid \overline{\mathrm{C}}) \mathrm{P}(\overline{\mathrm{C}}) \\
& =1 \times \beta \mathrm{q}_{\mathrm{I}}+\binom{10}{0}\left(1-\mathrm{q}_{\mathrm{I}}\right)^{0} \mathrm{q}_{\mathrm{I}}^{10} \times(1-\beta)=\beta \mathrm{q}_{I}+(1-\beta) \mathrm{q}_{I}{ }^{10} \approx \beta \mathrm{q}_{\mathrm{I}} \\
& \mathrm{k} \neq 0 \\
& \mathrm{P}(\mathrm{X}=\mathrm{k})=\mathrm{P}(\mathrm{X}=\mathrm{k} \mid \mathrm{C}) \mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{X}=\mathrm{k} \mid \overline{\mathrm{C}}) \mathrm{P}(\overline{\mathrm{C}}) \\
& =0 \times \beta \mathrm{q}_{\mathrm{II}}+\binom{10}{\mathrm{k}}\left(1-\mathrm{q}_{\mathrm{I}}\right)^{\mathrm{k}} \mathrm{q}_{\mathrm{II}}^{10-\mathrm{k}} \times\left(1-\beta \mathrm{q}_{\mathrm{I}}\right)=\left(1-\beta \mathrm{q}_{\mathrm{I}}\right) \times\binom{ 10}{\mathrm{k}}\left(1-\mathrm{q}_{\mathrm{I}}\right)^{\mathrm{k}}{q_{I}}^{10-\mathrm{k}} \\
& \approx\binom{10}{\mathrm{k}}\left(1-\mathrm{q}_{\mathrm{I}}\right)^{\mathrm{k}} \mathrm{q}_{\mathrm{I}}^{10-k}
\end{aligned}
$$

COMMON CAUSE FAILURE: ß FACTOR METHOD (continued)

- Common cause failure increased the probability that all components will fail dramatically. Take $\mathrm{N}=10, \mathrm{q}_{\mathrm{I}}=0.01$ as an example:
- If $\beta=0$ (no common cause failure), the probability that all 10 components will fail is $\binom{10}{0}(1-0.01)^{0} 0.01^{10 \square}=0.01^{10 \square}=10^{-20}$
- If $\beta=0.01$, the probability the common cause failure happens is $\mathrm{P}(\mathrm{C})=\beta \mathrm{q}_{I}=0.01 \times 0.01=10^{-4}$. The probability that all 10 components will fail is $\beta \mathrm{q}_{\mathrm{I}}+(1-\beta) \mathrm{q}_{\mathrm{I}}{ }^{10}=0.01 \times 0.01+(1-0.01) \times 0.01^{10} \approx 10^{-4}$
- With $\beta=0.01$, we have all components failure probability of 10^{-4} while without common cause failure, we have 10^{-20}, which is far less than 10^{-4}.

COMMON CAUSE FAILURE: β FACTOR METHOD (continued)

beta=0											
p k			2	3	4	5	6	7		9	10
0.01	1.0000E-20	9.9000E-18	4.4105E-15	1.1644E-12	2.0173E-10	2.3965E-08	1.9771E-06	1.1185E-04	4.1524E-03	9.1352E-02	9.0438E-01
0.001	1.0000E-30	9.9900E-27	4.4910E-23	1.1964E-19	2.0916E-16	2.5074E-13	2.0874E-10	1.1916E-07	4.4641E-05	9.9104E-03	9.9004E-01
0.0001	1.0000E-40	9.9990E-36	4.4991E-31	1.1996E-26	2.0992E-22	2.5187E-18	2.0987E-14	1.1992E-10	4.4964E-07	9.9910E-04	9.9900E-01
beta=0.01											
p k	0	1	2	3	4	5	6	7		9	10
0.01	1.0000E-04	9.8990E-18	4.4100E-15	1.1642E-12	2.0170E-10	2.3963E-08	1.9769E-06	1.1184E-04	4.1519E-03	9.1343E-02	9.0429E-01
0.001	1.0000E-05	9.9899E-27	4.4910E-23	1.1964E-19	2.0916E-16	2.5074E-13	2.0874E-10	1.1916E-07	4.4641E-05	9.9103E-03	9.9003E-01
0.0001	1.0000E-06	9.9990E-36	4.4991E-31	1.1996E-26	2.0992E-22	2.5187E-18	2.0987E-14	1.1992E-10	4.4964E-07	9.9910E-04	9.9900E-01
beta=0.001											
p k			2	3	4	5	6	7	8	9	10
0.01	1.0000E-05	9.8999E-18	4.4104E-15	1.1643E-12	2.0172E-10	2.3965E-08	1.9771E-06	1.1185E-04	4.1523E-03	9.1351E-02	9.0437E-01
0.001	1.0000E-06	9.9900E-27	4.4910E-23	1.1964E-19	2.0916E-16	2.5074E-13	2.0874E-10	1.1916E-07	4.4641E-05	9.9103E-03	9.9004E-01
0.0001	1.0000E-07	9.9990E-36	4.4991E-31	1.1996E-26	2.0992E-22	2.5187E-18	2.0987E-14	1.1992E-10	4.4964E-07	9.9910E-04	9.9900E-01

*In the above table, q means q_{I},

COMMON CAUSE FAILURE - $\boldsymbol{\beta}$ FACTOR METHOD (continued)

No common cause failure, \log scale

COMMON CAUSE FAILURE - $\boldsymbol{\beta}$ FACTOR METHOD

(continued)

Common cause factor is $\mathbf{0 . 0 1}$, log scale

COMMON CAUSE FAILURE - $\boldsymbol{\beta}$ FACTOR METHOD

(continued)

Common cause factor of $\mathbf{0 . 0 0 1}, \log$ scale

[^0]: * Usually there are no precursors

