REAL AVAILABILITY 2005

Common Cause Failures:

Failures of multiple components involving a shared dependency

KEY POINTS OF THE SESSION

Component Arrangements

Common Cause Failures

B Factor Method

Data Center Common Cause Failures

Dual Path and Dual Cord

Fault Tree Analysis of Single-Cord, Dual Path, and Dual Cord Service

COMPONENT ARRANGEMENTS

Parallel: Success of One Component is Sufficient for System Success (e.g., backup power sources)

 $P_{system} = 1 - \prod_{i} q_{i}, \quad q_{i} = Failure Probability of i - th Component$ Three Component System Failure Success $S = A + B + C = 1 - \overline{A} \cdot \overline{B} \cdot \overline{C}$ (Note: Adding Components Increases P_{system})

success

$\begin{array}{c} \textbf{COMPONENT ARRANGEMENTS} \\ & \longrightarrow A - B - C \longrightarrow \end{array}$

Series: Success of Every Component is Necessary for System Success (e.g., the links of a chain)

 $P_{system} = \prod_{i} p_{i}$, p_{i} = Success Probability of i - th Component

(Note: Adding Components Decreases P_{system}) success

EXAMPLE OF COMMON CAUSE FAILURE SOURCES POTENTIALLY ABLE TO AFFECT DATA CENTERS SERIOUSLY

	Environmental (Exceeding Allowable			
Support System	Envelope)	Structural	External	
Fuel Quantity	Temperature	Manufacturing	Earthquake	
Fuel Quality	Pressure	Flaw	Hurricane	
Cooling	Vibration	Faulty Maintenance	Tornado	
Lubrication	Noise	Procedure	Flood	
Ventilation	Air Quality	Component	Explosion Labor Strike	
Human Error	Electromagnetic Pulse	Design Error		
Control Power			Terrorist	
Interfacing Switchgear			Action	

	DEPENDENT	STRUCTURAL*	ENVIRONMENTAL	EXTERNAL*		
Description of Failure Cause	Failure of an interfacing system, action or component	A common material or design flaw which simultaneously affects all components population	A change in the operational environment which affects all members of a component population simultaneously	An event originating outside the system which affects all members of a component population simultaneously		
Hardware Examples	 Loss of electrical power A manufacturer provides defective replacement parts that are installed in all components of a given class 	 Faulty materials Aging Fatigue Improperly cured materials Manufacturing flaw 	High pressureHigh temperatureVibration			
Human Examples	 Following a mistaken leader An erroneous maintenance procedure is repeated for all components of a given class 	 Incorrect training Poor management Poor motivation Low pay 	 Common cause psf's New disease Hunger Fear Noise Radiation in control room 	 Explosion Toxic substance Severe Weather Earthquake Concern for families 		
Easy to Anticipate?:						
Component failure	High	Very Low	Medium	Medium		
Human error	Medium	Very Low	Medium	Medium		
Easy to Mitigate?: Component failure Human error	designed for mitigation High, if feedback	Very Low, hard to design for mitigation Very Low, the factors	Low Low	Low Low		
	provided to identify the error promptly	making CCF likely also discourage being prepared for correction				

TYPES OF COMMON CAUSE FAILURES AND THEIR ASPECTS

* Usually there are no precursors

COMMON CAUSE (i.e., DEPENDENT) FAILURES

Let CC Be a Common Cause Failure Event Causing Dependent Failures of Components A, B, C and D. The Component A Can Fail By

1. Independent Failure, Event A_i , Prob. = q_A

2. Dependent Failure, Event ($A_c^{\bullet}CC$), Prob. = Prob.[$A_c|CC$] • Prob.(CC) = Prob.(CC)

Prob.[Failure of Component A] = Prob. (A_i) + Prob. $(A_c \cdot CC)$ - Prob. $(A_i) \cdot$ Prob. $(A_c \cdot CC)$ Neglect, as Usually is of Small Value

COMMON CAUSE (i.e., DEPENDENT) FAILURES

Consider Failure of Four Components: A, B, C, D

Prob. [4 Component Failures] = Prob. $[A \cdot B \cdot C \cdot D]$ = Prob. $[A|(B \cdot C \cdot D)]$ Prob. $[B|(C \cdot D)]$ Prob. [C|D] Prob. (D)

Now Consider Events A, B, C, D Each to Have an Independent Version and a Version Dependent Upon Event CC, (Prob. (CC) = q_{cc})

Then
$$\begin{array}{ll} \operatorname{Prob.}(A \cdot B \cdot C \cdot D) \cong q_A q_B q_C q_D \\ + \operatorname{Prob.}[A_c | (B_c \cdot C_c \cdot D_c)] \operatorname{Prob.}[B_c | (C_c \cdot D_c \cdot CC)] \operatorname{Prob.}[C_c | (D_c \cdot CC)] \\ \\ \underbrace{\operatorname{Prob.}(D_c | CC) \operatorname{Prob.}(CC)} \\ \operatorname{Prob.}(D_c \cdot CC) \end{array}$$
Or
$$\begin{array}{ll} \operatorname{Prob.}(A \cdot B \cdot C \cdot D) \cong \underbrace{q_A q_B q_C q_D} \\ \operatorname{Prob.}(A \cdot B \cdot C \cdot D) \cong \underbrace{q_A q_B q_C q_D} \\ \operatorname{Independent} \end{array} + \underbrace{1 \cdot q_{cc}} \\ \operatorname{Dependent} \end{array}$$

COMMON CAUSE (i.e., DEPENDENT) FAILURES

Often
$$Order(q_{CC}) = Order(q_{A,B,C,D}) >> q_A q_B q_C q_D$$

 $\Rightarrow Prob.(A \cdot B \cdot C \cdot D) \cong q_{CC}$

In This Situation Redundancy of Components is of Little Benefit in Reducing Values of Prob. $(A \cdot B \cdot C \cdot D)$

Then Prob.(A · B · C · D) \cong Prob.(A_i · B_i · C_i · D_i) + Prob.(A_{cc} · B_{cc} · C_{cc} · D_{cc} · CC)

i + independent failure

c + dependent, or common cause failure

COMPONENT ARRANGEMENTS

COMMON CAUSE FAILURE – β FACTOR METHOD

- N components, each of which has an independent failure probability q_I ;
- Common cause failure factor β ; Let C be the event that common failure happens, $P(C) = \beta q_I$;
- If C happens, none of the N components can succeed;

NOTE: Sometimes sharing a common cause among N components will result in m (m \leq N) failing upon occurrence of the common cause.

NO COMMON CAUSE FAILURE

If there is no common cause failure, i.e. $\beta = 0$.

With N = 10, we obtain the following binomial distribution for X — the number of successful components.

$$P(X = k) = {\binom{10}{k}} (1 - q_I)^k q_I^{10-k},$$

k = 0, 1, 2, ..., 10

COMMON CAUSE FAILURE: β FACTOR METHOD (continued)

• If $\beta \neq 0$, X has the following distribution:

$$\begin{split} & P(X = 0) = P(X = 0 \mid C)P(C) + P(X = 0 \mid \overline{C})P(\overline{C}) \\ &= 1 \times \beta q_{I} + {\binom{10}{0}}(1 - q_{I})^{0} q_{I}^{10} \times (1 - \beta) = \beta q_{I} + (1 - \beta)q_{I}^{10} \approx \beta q_{I} \\ & k \neq 0 \\ & P(X = k) = P(X = k \mid C)P(C) + P(X = k \mid \overline{C})P(\overline{C}) \\ &= 0 \times \beta q_{I} + {\binom{10}{k}}(1 - q_{I})^{k} q_{I}^{10 - k} \times (1 - \beta q_{I}) = (1 - \beta q_{I}) \times {\binom{10}{k}}(1 - q_{I})^{k} q_{I}^{10 - k} \\ &\approx {\binom{10}{k}}(1 - q_{I})^{k} q_{I}^{10 - k} \end{split}$$

COMMON CAUSE FAILURE: β FACTOR METHOD (continued)

- Common cause failure increased the probability that all components will fail dramatically. Take N = 10, $q_I = 0.01$ as an example:
 - If $\beta = 0$ (no common cause failure), the probability that all 10 components will fail is $\binom{10}{0}(1-0.01)^0 0.01^{10} = 0.01^{10} = 10^{-20}$
 - If $\beta = 0.01$, the probability the common cause failure happens is $P(C) = \beta q_I = 0.01 \times 0.01 = 10^{-4}$. The probability that all 10 components will fail is $\beta q_I + (1 - \beta) q_I^{10} = 0.01 \times 0.01 + (1 - 0.01) \times 0.01^{10} \approx 10^{-4}$
 - With $\beta = 0.01$, we have all components failure probability of 10^{-4} while without common cause failure, we have 10^{-20} , which is far less than 10^{-4} .

COMMON CAUSE FAILURE: β FACTOR METHOD (continued)

beta=0											
p k	0	1	2	3	4	5	6	7	8	9	10
0.01	1.0000E-20	9.9000E-18	4.4105E-15	1.1644E-12	2.0173E-10	2.3965E-08	1.9771E-06	1.1185E-04	4.1524E-03	9.1352E-02	9.0438E-01
0.001	1.0000E-30	9.9900E-27	4.4910E-23	1.1964E-19	2.0916E-16	2.5074E-13	2.0874E-10	1.1916E-07	4.4641E-05	9.9104E-03	9.9004E-01
0.0001	1.0000E-40	9.9990E-36	4.4991E-31	1.1996E-26	2.0992E-22	2.5187E-18	2.0987E-14	1.1992E-10	4.4964E-07	9.9910E-04	9.9900E-01
beta=0.01											
p K	0	1	2	3	4	5	6	7	8	9	10
0.01	1.0000E-04	9.8990E-18	4.4100E-15	1.1642E-12	2.0170E-10	2.3963E-08	1.9769E-06	1.1184E-04	4.1519E-03	9.1343E-02	9.0429E-01
0.001	1.0000E-05	9.9899E-27	4.4910E-23	1.1964E-19	2.0916E-16	2.5074E-13	2.0874E-10	1.1916E-07	4.4641E-05	9.9103E-03	9.9003E-01
0.0001	1.0000E-06	9.9990E-36	4.4991E-31	1.1996E-26	2.0992E-22	2.5187E-18	2.0987E-14	1.1992E-10	4.4964E-07	9.9910E-04	9.9900E-01
beta=0.001											
p k	0	1	2	3	4	5	6	7	8	9	10
0.01	1.0000E-05	9.8999E-18	4.4104E-15	1.1643E-12	2.0172E-10	2.3965E-08	1.9771E-06	1.1185E-04	4.1523E-03	9.1351E-02	9.0437E-01
0.001	1.0000E-06	9.9900E-27	4.4910E-23	1.1964E-19	2.0916E-16	2.5074E-13	2.0874E-10	1.1916E-07	4.4641E-05	9.9103E-03	9.9004E-01
0.0001	1.0000E-07	9.9990E-36	4.4991E-31	1.1996E-26	2.0992E-22	2.5187E-18	2.0987E-14	1.1992E-10	4.4964E-07	9.9910E-04	9.9900E-01

COMMON CAUSE FAILURE — β FACTOR METHOD (continued)

No common cause failure, log scale 0.1-2 3 4 5 6 0 0.0001 1E-07-1E-10-1E-13-Probability 1E-16-1E-19-1E-22 1E-25 1E-28-1E-31- $--- q_I = 0.01$ 1E-34 $--- q_I = 0.001$ 1E-37-- q_I = 0.0001 1E-40

Number of successes

COMMON CAUSE FAILURE — β FACTOR METHOD (continued)

Common cause factor is 0.01, log scale

Number of successes

COMMON CAUSE FAILURE — β FACTOR METHOD (continued)

Common cause factor of 0.001, log scale

Number of successes