Chapter 1. Meeting 1, Foundations: Live Electronics

1.1. Announcements

- 21M.380: Music Technology: Live Electronics Performance Practices
- Creative, hands-on exploration of contemporary and historical approaches to live electronics performance and improvisation, including basic analog instrument design, computer synthesis programming, and hardware and software interface design.

1.2. Overview

- Technology and instrument building
- The diversity of live electronics practices
- About this course

1.3. Instrument Building and Music Making

- · Since humans have moved beyond the voice, music and technology have been closely linked
- · The development of new technologies has nearly always led to new instruments
- The development of new instruments has often been linked to the development of new performance practices, ensembles, and musics
- In some traditions, instrument building is fundamental to music making
- With modern technology, instrument making becomes an aesthetic type interface design

1.4. Utility versus Aesthetics in Interface Design

• What are the criteria for evaluating a musical interfaces?

1.5. The Early Histories of Electronic and Computer Music

- · At least four main branches of development in electronic and computer music
- All converge in live-electronics practices

1.6. A. Dedicated Electronic Instruments

• The Telharmonium: 1898-1901

Public domain image.

• The Theremin: 1920

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- The electric guitar and organ
- · Turntables, radios, and related electronics

1.7. B. Analog Tape and Analog Synthesis

• Musicians, composers, and researchers repurpose radio equipment for music making

- Musique concrète
 - Pioneered by Pierre Schaeffer in late 1940s and 1950s
 - Developed techniques of manipulating, cutting, splicing, and transforming recorded sounds into music
- Electronic music
 - Pioneered by Werner Meyer-Eppler, Herbert Eimert, and Karlheinz Stockhausen in the 1950s
 - Developed techniques of combining sine tones and generated signals with filters and other modulation techniques
- Both techniques quickly merge
- Computer synthesis techniques routinely combine sample- and synthesis-based techniques

1.8. C. The Modular and Portable Synthesizers

- 1957: RCA Mark II, developed by Belar and Olson, installed
- 1964: Moog, with composer Deutsch, builds first synthesizer prototype
- 1967: Moog releases modular systems I, II, and III

Courtesy of Roger Luther. Used with permission.

Courtesy of Roger Luther. Used with permission.

- Numerous varieties of commercial and installation synthesizers are built in the 1960s
- · Modular designs and interfaces provide a lasting legacy in all synthesis systems

1.9. D. Synthesis on Mainframes and Computers

- Early computers in the 1950s are used for synthesizing sound directly with integrated loudspeakers
- 1957: Max Mathews creates Music I on an IBM 704

Courtesy of Lawrence Livermore National Laboratory. Used with permission.

- Mathews develops Music II to V, Music N languages develop into to Csound
- Max/MSP and Pd software lineages begin in 1980s
- Other languages and processing frameworks continue to be developed: Supercollider, Impromptu, others

1.10. Live Electronics

- Deployment of these four traditions in performance contexts
- · Long tradition of composers and musicians building custom instruments and interfaces
- Long tradition of employing composition and improvisatory practices from jazz and experimental music
- Two basic approaches
 - · Develop interfaces for controlling computer synthesis and processing

· Develop interfaces integrated with electro-mechanical devices and electronics

1.11. A. Interfaces to Computer Synthesis

- The laptop: keyboards, trackpads, mice
- · Gamepads: joysticks, wii controllers, related
- Touchscreens: iPhone, iPad, etc
- Custom musical controllers
 - Manta

Courtesy of Snyderphonics. Used with permission.

• Lemur

© JazzMutant. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

· Analog sensor input via Arduino or other devices

Photo courtesy of SparkFun Electronics.

Arduino Danger Shield. Photo courtesy of SparkFun Electronics.

1.12. B. Interfaces with Integrated Sound Sources

- Turntables
- Custom-built circuits
- · Manipulated speakers and other transducers
- · Manipulated casette decks and tape players

1.13. A Personal Performative Context

- For composers of computer music, the move to live-electronics is a major constraint
- Performing with acoustic instruments is a significant musical and technological challenge

1.14. KIOKU

• Trio of taiko and percussion, alto sax, and live electronics, from 2006 to the present

- · Deploy east-asian traditional and folk songs in a free-jazz inspired context
- Led to the development of a comprehensive system employing a number of inexpensive controllers
- Listening: KIOKU: Pinari

1.15. KIOKU Performance System: libOX

• Modular Max/MSP system with a large collection of controllers

• Two dual-analog game pads form the key performance interface

1.16. The Dual Analog Gamepad

Logitech Dual Action Gamepad

© Logitech. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- 2 XY joysticks, 10 buttons, 1 5-position d-pad
- Example: a simple noise instrument
 - Buttons trigger noise sources with different envelopes
 - XY joystick 1: y axis control amplitude, x axis controls high-pass filter
 - XY joystick 2: y axis control amplitude modulation, x axis controls low-pass filter
- An ergonomic, expressive, and inexpensive interface

1.17. 21M.380: Areas of Focus

- Syllabus
- · Historical traditions and practices
- Instrument and interface design
 - Pd synthesis tools

- Dual-analog game pads
- Touchscreen controllers with TouchOSC
- Sensors and physical inputs with Arduino
- Elementary electro-magnetic instruments
- · Custom-built circuits with basic CMOS ICs
- · Composition and improvisation

1.18. 21M.380: Prerequisites

• None but curiosity, willingness to experiment

1.19. 21M.380: Course Meetings

- Two types of meetings
 - Topic meetings: focused on material in readings, listening, and themes, combining lecture, discussion, demonstration, and listening
 - · Workshop meetings: improvisation, performance, and discussion
- Bring laptops to all class meetings
- Lecture notes
 - · Provided via course website

1.20. 21M.380: Required Course Materials: Software

• Pure Data (Pd), the Pd-extended distribution

Provides installers for a number of platforms and bundles valuable extension libraries

http://puredata.info/downloads

• Martingale: a library of Pd resources

http://code.google.com/p/martingale

1.21. 21M.380: Required Course Materials: Hardware

- Hardware resources up to \$100 are required
- A portable powered or battery-powered amplifier for keyboards/synthesizers and the appropriate cable (not a guitar amp). The following are good options, in order of preference:
 - 1. Phonic MK15 Keyboard Amp (\$80) with 3.5mm stereo to RCA male cable (at least 6 feet long)

© Phonic. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

2. Behringer Ultratone KT108 15w Keyboard Amplifier (\$70 to \$75) with 3.5mm stereo to RCA male cable (at least 6 feet long) and two RCA female to 1/4 inch TS (mono) male adapters.

© Behringer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

3. Altec Lansing iM-237 Orbit Ultraportable Speaker (\$18) or similar (includes attached cable).

© Altec Lansing. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

4. Numerous alternatives are acceptable: contact me

- A dual-analog game controller
 - 1. Logitech Dual Action USB Gamepad (\$10 to \$17)

© Logitech. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

2. There are a few alternatives that may work: contact me

1.22. 21M.380: Assignments: Reading

- All reading assignments are posted on the course website.
- One book:

Collins, N. 2009. *Handmade Electronic Music: The Art of Hardware Hacking.* 2nd ed. New York: Routledge.

• Numerous carefully selected articles and chapters:

1. Brown, A. R. and A. Sorensen. 2009. "Interacting with Generative Music through Live Coding." *Contemporary Music Review* 28(1): pp. 17-29.

2. Cascone, K. 2004. "Grain, Sequence, System [three levels of reception in the performance of laptop music]." *Intelligent Agent* 4(1).

3. Collins, N. 2003. "Live Coding in Laptop Performance." Organised Sound 8(3): pp. 321-330.

4. Cook, P. 2001. "Principles for designing computer music controllers." *Proceedings of the Conference on New Interfaces for Musical Expression.*

5. Dennis, B. 1991. "Cardew's 'Treatise' (Mainly the Visual Aspects)." Tempo 177: pp. 10-16.

6. Driscoll, J. and M. Rogalsky. 2004. "David Tudor's 'Rainforest': An Evolving Exploration of Resonance." *Leonardo Music Journal* 14: pp. 25-30.

7. Fiebrink, R. and G. Wang, P. Cook. 2007. "Don't Forget the Laptop: Using Native Input Capabilities for Expressive Musical Control." *Proceedings of the Conference on New Interfaces for Musical Expression* pp. 164-167.

8. Ghazala, Q. R. 2004. "The Folk Music of Chance Electronics: Circuit-Bending the Modern Coconut." *Leonardo Music Journal* 14(1): pp. 97-104.

9. Gresham-Lancaster, S. 1998. "The Aesthetics and History of the Hub: The Effects of Changing Technology on Network Computer Music." *Leonardo Music Journal* 8: pp. 39-44.

10. Holmes, T. 2008. "Live Electronic Music and Ambient Music." In T. Holmes, ed. *Electronic and Experimental Music*. Third ed. New York: Routledge, pp. 376-406.

11. Kuivila, R. 2004. "Open Sources: Words, Circuits and the Notation-Realization in the Music of David Tudor." *Leonardo Music Journal* 14: pp. 17-23.

12. Perkis, T. 2009. "Some Notes on My Electronic Improvisation Practices." In R. T. Dean, ed. *The Oxford Handbook of Computer Music.* Oxford University Press, pp. 161-166.

13. Puckette, M. 2002. "Max at 17." Computer Music Journal 26(4): pp. 31-43.

14. Rebelo, P. and A. Renaud. 2006. "The Frequencyliator—Distributing Structures for Networked Laptop Improvisation." *Proceedings of the Conference on New Interfaces for Musical Expression* pp. 53-56.

15. Ryan, J. 1991. "Some Remarks on Musical Instrument Design at STEIM." *Contemporary Music Review* 6(1): pp. 3-17.

16. Smallwood, S. and D. Trueman, P. R. Cook, G. Wang. 2008. "Composing for Laptop Orchestra." *Computer Music Journal* 32(1): pp. 9-25.

17. Tanaka, A. 2009. "Sensor-Based Musical Instruments and Interactive Music." In R. T. Dean, ed. *The Oxford Handbook of Computer Music*. Oxford University Press, pp. 233-257.

18. Trueman, D. 2007. "Why a Laptop Orchestra?." Organised Sound 12(2): pp. 171-179.

19. Wanderley, M. M. and N. Orio. 2002. "Evaluation of Input Devices for Musical Expression: Borrowing Tools from HCI." *Computer Music Journal* 26(3): pp. 62-76.

20. Wang, G. 2007. "A History of Programming and Music." In N. Collins and J. d'Escriván, eds. *The Cambridge Companion to Electronic Music.* Cambridge: Cambridge University Press, pp. 55-71.

21. Weinberg, G. 2002. "Playpens, Fireflies, and Squeezables: New Musical Instruments for Bridging the Thoughtful and the Joyful." *Leonardo Music Journal* 12: pp. 43-51.

22. Wright, M. 2005. "Open Sound Control: an enabling technology for musical networking." *Organised Sound* 10(3): pp. 193-200.

1.23. 21M.380: Assignments: Listening

- All listening assignments will be posted on the course website.
- Take notes when you listen
- What to listen for without notation: duration, instrumentation, method of production, recording or performance context, notable sonic events, form, temporal design and proportions, aesthetic or historical contexts, and/or critical and subjective responses

1.24. 21M.380: Assignments: Discussion Leaders

- · Students are assigned to cover reading and listening assignments for each class
- Must be available to lead discussion, answer questions, and provide a resource to class
- · Must post minimal notes on the class website
- Need two volunteers for next class

1.25. 21M.380: Assignments: Pd Tutorials

- Short programming exercises in Pd
- Must be completed before the next class

1.26. 21M.380: Assignments: Controller/Interface/Instrument Design Projects

- Controller/Interface/Instrument Design 1
 - Must use Pd and dual-analog controller

- Must present draft and complete a report
- Due before spring break
- Controller/Interface/Instrument Design 2
 - May use any interface, design, or approach (as long as there are at least two performative input parameters)
 - Must present proposal, draft, and complete a report
 - Due at end of semester

1.27. 21M.380: Assignments: Performance Framework

- A design for a composition or performance context
- Completed in small groups
- Will be presented on a concert on 4 May

1.28. 21M.380: Assignments: Submission

- All assignments are submitted digitally via email attachment (or as Forum posts)
- Some assignments are due before class, others are due at 11:59:59 PM on due date
- Late within 1 week: 20% reduction; no assignments accepted after 1 week

1.29. 21M.380: Attendance

- Mandatory and essential
- Always communicate with me about needs for excused absences
- More than one unexcused absence incurs a 3% grade reduction

1.30. 21M.380: Exams and Quizzes

- Quizzes will be announced
- All short written answers
- · Quizzes will be based on reading, listening, and course content

• No final exam

1.31. 21M.380: Grading

- Reading and Listening Discussion Leader: 10%
- Pd Tutorials: 10%
- Controller/Interface/Instrument Design 1 Implementation and Report: 15%
- Controller/Interface/Instrument Design 1 Draft: 2.5%
- Controller/Interface/Instrument Design 2 Implementation, Report, and Presentation: 20%
- Controller/Interface/Instrument Design 2 Draft: 2.5%
- Controller/Interface/Instrument Design 2 Proposal: 2.5%
- Performance Framework: 10%
- Performance Frameworks Draft: 2.5%
- Quizzes: 15%
- Participation: 10%

1.32. 21M.380: Additional Policies

- Read entire syllabus
- Common courtesies
- Computers in class
- Academic integrity

1.33. 21M.380: Contact

- Email is always best
- Office hours

1.34. For Next Class

- · Download and read entire syllabus
- Download and install Pd and Martingale; test Pd installation
- Purchase/order dual-analog controller and amplifiers
- Bring computers

1.35. Testing Pd Installation

• Download and install Pd-extended

http://puredata.info/downloads

- Launch the Pd application
- Should see the "Pd window"
- · Under the "Media" menu, find the "Test Audio and MIDI" option

Under "TEST TONES," select 80 (dB), listen for a tone

If no tone is heard, make sure "compute audio" is selected

• If tone is broken or stutters, configure processing delay

Find "Audio Settings" options under Preferences

Increase delay until test tone is continuous

• If there is no sound, go to Menu: Preferences > Audio Settings

Try to select a different "output device 1"

• Download Martingale

http://code.google.com/p/martingale

- Place Martingale in a convenient locations (perhaps a directory where you store all Pd scripts)
- Accessing Martingale resources in Pd will be covered in the next meeting

1.36. Discussion Leader Assignment Schedule

21M.380 Music and Technology: Live Electronics Performance Practices Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.