Solar Cell Characterization

Lecture 16 – 11/8/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Tonio Buonassisi

Learning Objectives: Solar Cell Characterization

- 1. Describe basic classifications of solar cell characterization methods.
- 2. Describe function and deliverables of PV characterization techniques measuring J_{sc} losses.
- 3. Describe function and deliverables of PV characterization techniques measuring FF and V_{oc} losses.

Liebig's Law of the Minimum

S. Glunz, Advances in Optoelectronics 97370 (2007)

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline Silicon Solar Cells." *Advances in OptoElectronics* (2007).

 $\eta_{\text{total}} = \eta_{\text{absorption}} \times \eta_{\text{excitation}} \times \eta_{\text{drift/diffusion}} \times \eta_{\text{separation}} \times \eta_{\text{collection}}$

Buonassisi (MIT) 2011

Taxonomy of PV Device Characterization Techniques

- 1. By property tested: Electrical, structural, optical, mechanical...
- 2. By device performance metric affected: Manufacturing yield, reliability, efficiency (short-circuit current, open-circuit voltage, fill factor)...
- 3. By location (throughput): In-line (high throughput) vs. offline (low throughput).

Learning Objectives: Solar Cell Characterization

- 1. Describe basic classifications of solar cell characterization methods.
- 2. Describe function and deliverables of PV characterization techniques measuring J_{sc} losses.
- 3. Describe function and deliverables of PV characterization techniques measuring FF and V_{oc} losses.

Short Circuit Current

- Optical Reflection
- Spectral Response
- Minority Carrier Diffusion Length

Optical Reflection

Spectrophotometer: Measures specular and diffuse reflectance, and transmission.

Please see the lecture 16 video to see a photo of a spectrophotometer.

Increasing Absorption

Light trapping increases the "optical thickness" of a material

- Physical thickness can remain low
- Allows carriers to be absorbed close to the junction

 $\label{eq:courtesy} \mbox{ Courtesy of Christiana Honsberg. Used with permission.}$

Increasing Absorption

Effect of Textured Surfaces on Light Absorption

SEM image of textured silicon

Courtesy of Christiana Honsberg. Used with permission.

Q: What other mechanisms exist to trap light?

- A light generated minority carrier can readily recombine.
- If it the carrier reaches the edge of the depletion region, it is swept across the junction and becomes a majority carrier. This process is collection of the light generated carriers.
- Once a carrier is collected, it is very unlikely to recombine.

- Collection probability is the probability that a light generated carrier will reach the depletion region and be collected.
- Depends on where it is generated compared to junction and other recombination mechanisms, and the diffusion length.

↓ L ^t	p	Active region for current collection falls approximately within a diffusion	n-type
Li Li	'n	length of the junction.	
			p-type

Collection probability is low further than a diffusion length away from junction

Courtesy of Christiana Honsberg. Used with permission.

Spectral Response

© Newport Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Newport Spectral Response tool Buonassisi (MIT) 2011

Spectral Response

Standards: IEC 60904-3 and 60904-8 Buonassisi (MIT) 2011

External vs. Internal Quantum Efficiency

$$IQE = \frac{EQE}{(1-R)} = \frac{Electrons Out}{(Photons In) \cdot (1-R)}$$

... where R = Reflectivity

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Spectrally-Resolved Laser Beam Induced Current (SR-LBIC)

Please see the lecture 16 video or the link below for a visual of the instrument.

- 4 or more lasers measure IQE(λ).
- Digital processing of data extracts relevant device parameters.
- XY stage moves sample.
- A 2D map of IQE obtained!
- In advanced versions, all lasers fire simultaneously (as they are pulsed at different frequencies) into a fibre optic cable. FFT of the current signal decouples different wavelengths.

http://www.isfh.de/institut_solarforschung/media/sr_lbic_messplatz_1.jpg

Minority Carrier Diffusion Length

At each point...

Graph and photo © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

See: P. A. Basore, *IEEE Trans. Electron. Dev.* **37**, 337 (1990). Buonassisi (MIT) 2011

Mapped over an entire sample...

Learning Objectives: Solar Cell Characterization

- 1. Describe basic classifications of solar cell characterization methods.
- 2. Describe function and deliverables of PV characterization techniques measuring J_{sc} losses.
- 3. Describe function and deliverables of PV characterization techniques measuring FF and V_{oc} losses.

V_{oc} and Operating Conditions

- IV Curve Measurements
- Series Resistance
 - Contact Resistance
 - Sheet Resistance
- Shunt Resistance
 - Lock-in Thermography
- Electroluminescence

Refresher: Open Circuit Voltage

- If collected light-generated carriers are not extracted from the solar cell but instead remain, then a charge separation exists.
- The charge separation reduces the electric field in the depletion region, reduces the barrier to diffusion current, and causes a diffusion current to flow.

Two Diode Model

Equivalent Circuit Diagram of Solar Cell

IV Curve Measurements

$$J = J_L - J_{01} \exp\left(\frac{q(V+JR_s)}{kT}\right) - J_{02} \exp\left(\frac{q(V+JR_s)}{2kT}\right) - \frac{V+JR_s}{R_{shunt}}$$
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply
multiply each "J"
by "-1".
Note: You may see
this formula with
sign of current
inverted. Simply of cu

Voltage [V]

IV Curve Measurements

Several IV curves for real solar cells, illustrating a variety of IV responses!

Physical Causes of Series Resistance

Series resistance composed of emitter and metal grid resistance terms.

Want large cross section area of grid and emitter to reduce resistances.

 $R = \frac{\rho l}{\Lambda}$

Physical Causes of Shunt Resistance

Paths for electrons to flow from the emitter into the base. Can be caused by physical defects (scratches), improper emitter formation, metallization over-firing, or material defects (esp. those that traverse the space-charge region).

Courtesy of Trans Tech Publications and Otwin Breitenstein. Used with permission.

Potential barrier for electrons at a forward-biased n^+p junction crossed by a charged extended defect.

O. Breitenstein *et al.*, "EBIC investigation of a 3-Dimensional Network of Inversion Channels in Solar Cells on Silicon Ribbons," *Solid State Phenomena* **78-79**, 29-38 (2001).

Effect of R_s and R_{sh}

High series resistance and low shunt resistance degrade primarily FF, but in severe cases Voc and possibly Jsc.

Lock-in Thermography

Lock-in Thermography Images Shunts

(e.g., Local Increases in Dark Forward Current)

See the lecture 16 video for related visuals and explanation.

Lock-in Thermography

Figure 1. Experimental set-up of the LimoLIT measurement assembly. The wafer with a *pn* junction or the solar cell can be illuminated by a halogen lamp (constant-bias light). The modulated reference signal (pulsed light) is provided by an array of LEDs. Different wavelengths can be used

 $\ensuremath{\mathbb{C}}$ Wiley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

M. Kaes et al., *Prog. Photovolt.* 12, 355 (2004)
J. Isenberg and W. Warta, *Prog. Photovolt.* 12, 339 (2004)
O Breitenstein et al., *Solar Energy Mater. Solar Cells* 65, 55 (2001)

Lock-in Thermography - Sensitivity

Sensitivity is a function of integration time.

O Breitenstein et al., Solar Energy Mater. Solar Cells 65, 55 (2001)

Lock-in Thermography – Dark vs. Illuminated

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Fig. 6. Schematic 2-dimensional potential distribution on a positively charged surface (in front) crossing an n^+p -junction. E_e : conduction band edge, E_v : valence band edge, E_b : surface potential barrier height. 31

Lock-in Thermography – Imaging Losses

$$J = J_L - J_{01} \exp\left(\frac{q(V + JR_s)}{kT}\right) - J_{02} \exp\left(\frac{q(V + JR_s)}{2kT}\right) - \frac{V + JR_s}{R_{shunt}}$$

32

Correlation between Thermography and LBIC

525mV Forward Biased (V_{oc} = 571mV) 8Hz, 2hour scan, (30000 Frames)

White-light LBIC (essentially probes the bulk, below the emitter)

Cheaper Methods of Shunt Detection:

Liquid Crystal Thermochromic Sheets

See: "Shunt imaging in solar cells using low cost commercial liquid crystal sheets" C. Ballif *et al., Proc. IEEE Photovoltaic Specialists Conference*, 2002, pp. 446- 449.

Electroluminescence

Cell

Module

Courtesy of ISFH. Used with permission.

Evolution of IR Imaging Techniques

© Martin Kasemann. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Kasemann, M., et al. "Progress in Silicon Solar Cell Characterization with Infrared Imaging Methods." Proceedings of the 23rd European Photovoltaic Solar Energy Conference (2008): 965-973. 36

Suns-Voc

- Measures V_{oc} as a function of illumination condition, with decaying flash lamp.
- Useful for decoupling series resistance losses from other defects.
- Commercialized by Sinton Instruments.

© R. A. Sinton and A. Cuevas. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Sinton and Cuevas, Proc. 16th EU-PVSEC (Glasgow, UK, 2000).

MIT OpenCourseWare http://ocw.mit.edu

2.627 / 2.626 Fundamentals of Photovoltaics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.