Toward a 1D Device Model Part 1: Device Fundamentals

Lecture 7 – 9/29/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011

Prof. Tonio Buonassisi

Learning Objectives: Toward a 1D Device Model

- 1. Describe the difference between "Energy Conversion Efficiency" and "Quantum Efficiency."
- 2. Describe common factors that cause solar cell IV curves to deviate from an ideal diode model: shunt & series resistance, recombination currents, and current crowding.
- 3. Calculate series resistance for a solar cell.
- 4. Calculate the Fermi Energy of a solar cell as a function of dopant concentration, illumination condition, and temperature.
- 5. Calculate carrier generation as a function of depth in a solar cell.
- 6. Calculate how material quality (minority carrier diffusion length) affects QE and solar cell performance.
- 7. Create a 1D model for solar cell performance based on diffusion length, optical absorption coefficient, surface reflectivity, and series & shunt resistances.

Key Concept:

"Energy conversion efficiency" is not the same thing as "quantum efficiency".

"Quantum efficiency (QE)" is defined as the number of electrons out per incident photon. Note that QE is simply a census: it does not take into consideration the energy of the electron or photon.

QE is generally reported as a function of wavelength. QE is a useful troubleshooting tool to identify why a device is underperforming.

QE values can be quite high (between 60 and 99% for certain wavelengths), and thus can be used by devious individuals to misrepresent the conversion efficiency of their solar cell device.

A Note about "Efficiency"

LETTERS

Solution-processed PbS quantum dot infrared photodetectors and photovoltaics Under –5 V bias and illumination from a 975 nm laser, our detectors show an internal quantum efficiency of 3%, a ratio of photocurrent to dark current of 630, and a maximum responsivity of 3.1×10^{-3} A W⁻¹. The photovoltaic response under 975 nm excitation results in a maximum open-circuit voltage of 0.36 V, short-circuit current of 350 nA, and short-circuit internal quantum efficiency of 0.006%.

Courtesy of Edward H. Sargent. Used with permission.

Technical Terms:

- Solar Conversion Efficiency
- External Quantum Efficiency
- Internal Quantum Efficiency

What does this *really* mean?

Solar Conversion Efficiency: Defined in Previous Slides

$$\eta = \frac{\text{Power Out}}{\text{Power In}} = \frac{I_{mp} \cdot V_{mp}}{\Phi} = \frac{\text{FF} \cdot I_{sc} \cdot V_{oc}}{\Phi}$$

Typical values are 12–20% for established technologies, <10% for most emerging technologies.

 η and Φ_{F} : Vary with illumination intensity (e.g., 1 Sun)

External Quantum Efficiency

$$EQE = \frac{Electrons Out}{Photons In}$$

Typical peak values are 60–90%, depending on reflectivity, for moderate-efficiency devices.

EQE highly wavelength- and illumination-dependent!

External Quantum Efficiency

Here's an example of a QE spectrum for a solar cell. Note the near-unity (i.e., 100%) QE in the visible wavelengths.

from PVCDROM

Internal Quantum Efficiency

$$IQE = \frac{EQE}{(1-R)} = \frac{Electrons Out}{(Photons In) \cdot (1-R)}$$

... where R = Reflectivity

Typical peak values between 80–98% for moderate-efficiency devices.

IQE highly wavelength- and illumination-dependent!

Internal Quantum Efficiency

Examples of illumination-dependent IQE measurements for a defect-rich multicrystalline silicon solar cell. Minority carrier trapping results in low IQE with low bias illumination.

Approach "efficiency" with a grain of salt:

When an efficiency is quoted, think about:

- What "efficiency" is being measured?
- What is the nature of the light being used?
 - What spectrometer to simulate solar spectrum?
 - If monochromatic, what wavelength?
 - What intensity (photon flux)?

An example of honest efficiency reporting

Please see the abstract from Huynh, W., J. Dittmer et al. "Hybrid Nanorod-Polymer Solar Cells." Science 295, no. 5564 (2002): 2425-7.

Learning Objectives: Toward a 1D Device Model

- Describe the difference between "Energy Conversion Efficiency" and "Quantum Efficiency."
- 2. Describe common factors that cause solar cell IV curves to deviate from an ideal diode model: shunt & series resistance, recombination currents, and current crowding.
- 3. Calculate series resistance for a solar cell.
- 4. Calculate the Fermi Energy of a solar cell as a function of dopant concentration, illumination condition, and temperature.
- 5. Calculate carrier generation as a function of depth in a solar cell.
- 6. Calculate how material quality (minority carrier diffusion length) affects QE and solar cell performance.
- 7. Create a 1D model for solar cell performance based on diffusion length, optical absorption coefficient, surface reflectivity, and series & shunt resistances.

Equivalent Circuit: Simple Case

Equivalent Circuit: Simple Case

Equivalent Circuit: Simple Case

Key Concepts:

The ideal diode equation can be enhanced in two key ways:

1) We can add the effects of parallel resistance and series resistance.

2) Advanced Concept: Instead of one saturation current I_0 , there are usually two saturation currents contributing to most solar cell devices: (a) one resulting from carrier recombination in the space-charge region (dominant at lower forward bias voltages) and (b) one resulting from carrier recombination in the bulk (dominant at higher forward bias voltages). The "two-diode model" takes both saturation currents into account.

$$J = J_{01} \exp\left(\frac{q\left(V - JR_{s}\right)}{n_{1}kT}\right) + J_{02} \exp\left(\frac{q\left(V - JR_{s}\right)}{n_{2}kT}\right) + \frac{V - JR_{s}}{R_{sh}} - J_{I}$$

Further Reading:

Green, Chapter 5

PVCDROM, Chapter 4: Solar Cell

Operation<a>http://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-structure

K. McIntosh: "Lumps, Humps and Bumps: Three Detrimental Effects in the Current-Voltage Curve of Silicon Solar Cells," Ph.D. Thesis, UNSW, Sydney, 2001

IV Curve Measurements

Several IV curves for real solar cells, illustrating a variety of IV responses!

17

Fill Factor

Why Fill Factor (FF) Matters:

This is a sample IV curve for a high-efficiency solar cell: High FF.

Courtesy of PVCDROM. Used with permission.

Why Fill Factor (FF) Matters:

This is a sample IV curve for a low-efficiency solar cell (same I_{sc} and V_{oc} , but lower FF).

Courtesy of PVCDROM. Used with permission.

Effect of *Low* Shunt Resistance (R_{sh})

$$J = J_L - J_0 \exp\left(\frac{q(V + JR_s)}{nkT}\right) - \frac{V + JR_s}{R_{shunt}}$$

Source: http://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance

Courtesy of PVCDROM. Used with permission.

Physical Causes of Shunt Resistance (R_{sh})

Paths for electrons to flow from the emitter into the base. Can be caused by physical defects (scratches), improper emitter formation, metallization over-firing, or material defects (esp. those that traverse the space-charge region).

Fig. 6. Schematic 2-dimensional potential distribution on a positively charged surface (in front) crossing an n^+p -junction. E_e : conduction band edge, E_y : valence band edge, E_b : surface potential barrier height.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

For more information: See publications by Dr. Otwin Breitenstein (Max-Planck Institute in Halle, Germany) on use of lock-in thermography for shunt detection and classification in solar cells.

Effect of *High* Series Resistance (R_s)

$$J = J_L - J_0 \exp\left(\frac{q(V + JR_s)}{nkT}\right) - \frac{V + JR_s}{R_{shunt}}$$

NB: IV curve flipped!

Source: http://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance

Learning Objectives: Toward a 1D Device Model

- Describe the difference between "Energy Conversion Efficiency" and "Quantum Efficiency."
- 2. Describe common factors that cause solar cell IV curves to deviate from an ideal diode model: shunt & series resistance, recombination currents, and current crowding.
- 3. Calculate series resistance for a solar cell.
- 4. Calculate the Fermi Energy of a solar cell as a function of dopant concentration, illumination condition, and temperature.
- 5. Calculate carrier generation as a function of depth in a solar cell.
- 6. Calculate how material quality (minority carrier diffusion length) affects QE and solar cell performance.
- 7. Create a 1D model for solar cell performance based on diffusion length, optical absorption coefficient, surface reflectivity, and series & shunt resistances.

Components of Series Resistance

Components of Series Resistance

Components of R_s: Bulk Resistance

(i.e., How to choose absorber thickness)

Components of Series Resistance

Bulk (Base) Resistance

Resistivity:
$$\rho = \frac{1}{qn\mu}$$
 $\begin{cases} q = \text{charge} \\ n = \text{carrier density} \\ \mu = \text{carrier mobility} \end{cases}$ Base Resistance: $R_{\rm b} = \rho \frac{l}{A}$ $\begin{cases} l = \text{length of conductive path} \\ A = \text{Area of current flow} \\ \rho = \text{base resistivity} \end{cases}$

NB: Beware of non-linearities! (e.g., dependence of μ on n).

Components of R_s: Emitter Sheet Resistance

(i.e., How to design front contact metallization)

Components of Series Resistance

Emitter Sheet Resistance

Bulk Resistivity is defined according to the following expression:

$$\rho = \frac{1}{q \cdot \mu \cdot N}$$

$$\rho = \text{resistivity}$$

$$\mu = \text{carrier mobility}$$

$$N = \text{Carrier concentration (dopant concentration)}$$
Units of ρ : Ω -cm

For a thin layer, a "sheet resistance" can be described:

Sheet Resistance Losses

The total power loss is thus:

$$P_{\rm loss} = \int I^2 dR = \int_0^{S/2} \frac{J^2 b^2 y^2 \rho_s}{b} dy = \frac{J^2 b \rho_s S^3}{24}$$

Sheet Resistance Losses

At the maximum power point, the generated power in the emitter ROI is: $V_{
m mp}J_{
m mp}b^S\!\!/_{2}$

Hence, the fractional power loss at the maximum power point (MPP) is:

$$p = \frac{P_{\text{loss}}}{P_{\text{mpp}}} = \frac{\rho_s S^2 J_{\text{mp}}}{12V_{\text{mp}}}$$

Sheet Resistance Losses

Consider a solar cell with $\rho_s = 40 \ \Omega/\Box$, $J_{mp} = 30 \ mA/cm^2$, and $V_{mp} = 450 \ mV$. If we want less than a 4% power loss (i.e., p < 0.04) through the emitter, then

$$S < \sqrt{\frac{12 p V_{mp}}{\rho_s J_{mp}}} = 4 \text{ mm}$$

Components of R_s: Contact Resistance

Components of Series Resistance

Method to Measure Contact Resistance (TLM Method)

Sequential measurements of resistance between reference finger and measured finger.

Courtesy of Stefan Kontermann. Used with permission.

Components of R_s: Line Losses

Components of Series Resistance

Line Losses

Line Resistance:
$$R_{\rm b} = \rho \frac{l}{A} = \begin{cases} l = \text{length of conductive path} \\ A = \text{Area of current flow} \\ \rho = \text{metal resistivity} \end{cases}$$

Learning Objectives: Toward a 1D Device Model

- Describe the difference between "Energy Conversion Efficiency" and "Quantum Efficiency."
- 2. Describe common factors that cause solar cell IV curves to deviate from an ideal diode model: shunt & series resistance, recombination currents, and current crowding.
- 3. Calculate series resistance for a solar cell.
- 4. Calculate the Fermi Energy of a solar cell as a function of dopant concentration, illumination condition, and temperature.
- 5. Calculate carrier generation as a function of depth in a solar cell.
- 6. Calculate how material quality (minority carrier diffusion length) affects QE and solar cell performance.
- 7. Create a 1D model for solar cell performance based on diffusion length, optical absorption coefficient, surface reflectivity, and series & shunt resistances.

Question: When I illuminate my device, do I perturb the band structure or Fermi energy?

Calculate Fermi Energy (function of dopant + illumination + temperature)

Conductivity

45

Band Diagram (E vs. x)

At absolute zero, no conductivity (perfect insulator).

Buonassisi (MIT) 2011

46

At T > 0 K, some carriers are thermally excited across the bandgap.

Band Diagram (E vs. x) **Density of States** Conduction band Bandgap Energy Energy EG Valence band Distance **Density of States**

Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.

47

At T > 0 K, some carriers are thermally excited across the bandgap.

At T > 0 K, some carriers are thermally excited across the bandgap.

Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.

49

Temperature Dependence of Intrinsic Carrier Concentration

Arrhenius Equation, generic form:

 $N = N_{\rm o} \cdot \exp\left[-E_{\rm A}/k_{\rm b}T\right]$ Buonassisi (MIT) 2011

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Temperature Dependence of Intrinsic Carrier Concentration

Commons license. For more information, see http://ocw.mit.edu/fairuse.

Arrhenius Equation, generic form:

 $N = N_{\rm o} \cdot \exp\left[-E_{\rm A}/k_{\rm b}T\right]$ Buonassisi (MIT) 2011

51

At absolute zero, no conductivity (perfect insulator).

At a finite temperature, finite conductivity (current can flow).

At a finite temperature, finite conductivity (current can flow).

To reduce noise in a Si CCD camera, should you increase or decrease temperature?

Lower Temperature = Lower Intrinsic Carrier Concentration

CCD inside a LN dewar

http://msowww.anu.edu.au/observing/detectors/wfi.php Courtesy of The Australian National University. Used with permission.

Public domain image (Source: Wikimedia Commons).

http://www.answers.com/topic/semiconductor

Question: Transistors made from which semiconductor material experience greater electronic noise at room temperature: Germanium or Silicon?

Intrinsic Conductivity: Dependence on Bandgap

At a finite temperature, finite conductivity (current can flow).

Intrinsic Conductivity: Dependence on Bandgap

At a finite temperature, finite conductivity (current can flow).

Intrinsic Conductivity: Dependence on Bandgap

Please see table at https://web.archive.org/web/20130818190346/ http://www.siliconfareast.com/sigegaas.htm MIT OpenCourseWare http://ocw.mit.edu

2.627 / 2.626 Fundamentals of Photovoltaics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.