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Generalized Newtonian Fluid

Simple Shear Flow

Newtonian Fluid

Arbitrary Flow
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Non-Newtonian Viscosity

e7 IS a scalar
e [t must depend only on scalar invariants of Y

e Three scalar invariants are defined for Y
L=Y 7,=2(V-v)=0
I, = ZZJ- YV =2Y
L, = 2,2 j 2 ; Yi¥ iV =0

(last equality is for shear flow)

e Since Il is the only non-zero invariant in simple
shear flow, define

. definition of
— (1
V= \ 2 HY shear rate




Generalized Newtonian Fluid

e Restrictions
e Does not describe normal stress phenomena
e Does not describe time-dependent phenomena

e Strictly speaking, it applies only to shear
stresses in steady shear flow

» Empiricisms for 17(¥ )
e Power-law model
e Spriggs truncated power-law model
e Carreau model
e Bingham model
e Casson model




Power-Law Model

*n—1

n=my

 Captures high shear rate
behavior normally occuring in
processing

n<1  shear thinning
[0.15<n<0.6]

n=1 Newtonian fluid
m=LU

n>1  shear thickening
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Spriggs "Truncated Power-Law"

n=rn, j/Sj/o
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e Contains a characteristic
time A
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Carreau-Yasuda Model
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Bingham Model
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* Bingham plastics have a
yield stress T, and will not
flow unless the magnitude of
the stress T exceeds T,

sz/%('r: T)

e Time constant
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Casson Model

JET, =T + 4/l /J_rilvx for 7, > 7,
Y

Ve =0 for 7, <7,

e Useful for chocolate




Tube Flow of a Power-Law Fluid

e Force balance on control volume for.
cylindrical control volume /
of length Land radiusr | .1 [p\ /o \
_v _ _ _ _ _ _ 0
2 /1
(po—p ) -7 2mE O | N j
T =T, — - ‘}
R PL
A
T = apk
2L
e Constitutive equation gives ¢ =-n({)p, =-mj" dv,

a second expression for 1 _
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Tube Flow Results

178  DYNAMICS OF POLYMERIC LIQUIDS

e VVelocity profile 20 iy
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true wall shear rate apparent (Newtonian) wall shear rate

11



Radial Flow between Parallel
Disks

Fluid cntcrs through i
tubc of radius R, e Problem:
T o Determine Q(p;-p,, B, Ry, R,, m, n)
Fluid flows . . _
2B radially out e Assume the fluid viscosity is
l from disks described by the power-law
g — }» function
I | R, g
e Solution:

e Use the lubrication approximation
to simplify the problem to pressure
driven slit flow

e First find Q for this simple flow

Pressure Pressure
Po PL
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e Assume

v,=v.(x), v,=v, =0

T, = T;(X)

e z-component of the equation of motion (Table B.1)

ov, ov, ov, ov, 0 0 0 op
p TV Y, St = o Tt o T T T |~ PE

)4

oy 07

e Integrate to get the shear stress distribution from conservation of
momentum

Py—P 10
T =0 FL oyt
/

XZ
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For the generalized Newtonian fluid

R
Te ="M dx
and the power-law model gives
_ en—1 __ dvz "
n=me = dx

In order to avoid problems with the absolute value, consider only the

region x > 0, for which
_ ( dvzj
dx
Then

d d
& <0 = i
dvzj " dv, [ dvzj ' X
T =—m| — =m| — =(p,—p,)—
. [ dx dx dx (Po = P1) L

dx dx
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e The differential equation for the velocity is thus

1/n
dv, [po —pL) L
dx mL

which can be integrated to give

B 1/n 1
vzz[po pL] (Bﬁl—x#l)
mL 141

e Finally, the volume flow rate is found as

B ) 1/n
2WB
Q=2ijzdx= 1W (TB)
0 ;+2 m

where

pO_pL B:_d_pB

L dz
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Apply the slit flow results locally to the disk problem

e The corresponding quantities in the two geometries are
e pressure gradient

pO_pL__d_p N _d_p

L dz dr
e width

W =2mr
e The volume flow rate expression is adapted as

{(M)Q 1}"m_ dp

2B* 2wr| B dr

which can be integrated from r= R, to r= R,, by taking advantage of
the fact that for incompressible fluids Q is independent of r. This
gives
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~_[Ge2)o] m(RT-RT
Pl =170 s | B d-n)

o Finally, the above is inverted to give the volume flow rate in terms of
the pressure gradient

Q_4wB2 (p-p)BU-n)
)| (R &)

n

1/n




Justification for Applying the
Lubrication Approximation

Use an order of magnitude analyis to justify the use of the
lubrication approximation in adapting the slit flow results to
the radial disk flow problem

e For the radial flow problem, assume that
v, =v,.(r,z), vy=v.,=0

e r-component of the equation of motion
9, 1 0 ", 0
v, Zem| 2 (Y4 L T | P
or or

r or 0z r
e For the power-law fluid
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e For the power-law fluid
T =y s Y =3

e From Table B.3 in DPL, we get the rate-of-strain tensor in cylindrical
coordinates

( ) ov, 0 ov, )
or 0z
v=| 0 2% o
r
ov, 0 0
\ 0z J

from which the shear rate is found

2 2 2
b
or r 0z




Order of magnitude estimates for contributions to the shear rate

ov. V v V ov. V

~e/ _N_. ~e/

or R, r R, 0z B

for R, << R,
For small gap, B << R,, the shear rate is well approximated by
Y ov.| V
oz| B

Next evaluate the order of magnitude of the terms that appear in the
equation of motion

ov V2

Inertial t V., ~ P
(Inertial term) p o PR2
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(Stress terms)
10 mV" 0 m[V]n Ty M [V]nl %

__rTrr 2 pn—1 "2 Atz T, -
r or R;B 07 B r R \B

B

R,

Comparison of different terms shows that o7, / Oz is the largest term
on the right side by a factor of

(B/R,)" <1

The ratio of inertial to viscous forces is

e

PR, pVR, (BY o (BY
@[Kj” m(V/B)" { ZJ vy
B\ B

If the Reynolds number is at most (R.,/B), then inertial forces can still
be neglected
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Neglecting terms of order (B/R,) and smaller gives the equation of
motion as

O:—a—p—gfr

or o0z 7

which is locally (in r) the same as the slit flow equation
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Distributor Design (Power-Law)
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] Closed
Circular tube of radius R

Thin stit of__>_ I(z)

width B
L~
iff¢’;\ Pressure equals p,
7

u{ Average velocity of efflux is V

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

For flow down the circular tube

_ _Z
o-ai-t
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Equate this to the power-law result for Q(dp/dz) for tube flow

1 1

R

0 L l+3 2m dz
n

Integrate to get the pressure drop down the tube

- _2mL[%+3)n Q" (1_£j”+1
PP R \ @R’} n+l L

At any position z, there is p - p, driving force to force fluid through the
slit of local length I(2)

Slit flow for a power law fluid gives
1

y__B2 [(p=p)B|
(Yn)+2| 2miz)
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e Equating the available to needed pressure gradient gives I(z)

. 5L [ B (/n)+3) ( Oj (1__]"“
i _R(n+1)(2wR3 +2)




Squeezing Flow between Parallel
Disks

z = h(?) |

~— Fluid sample

F
T (DPL Example 4.2-7)




e Volume flow rate across surface at r
e Mass conservation

Q(r) =2mr’ (—h)

e Equation of motion with the lubrication approximation

Slit flow Radial flow
W 2TTr
B h
(P, -P,)/L —dp/dr
0 o(r)

e Hence

22wkt h dp)l/n
Q(r)— (1/n)+2 ( m dr
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e Solve for p(r) with the boundary condition that p(R) = p,

~ m(-h) (2n+l]”R”“ 1_@"“
PP =i\ 7o) vl R

e A force balance on the top plate gives

F(t)= J:T]g p p,+ ZZ Z_ rdrdo
00

= 0 on any
solid surface

E (_h) [Zn + lj " rmR™ Scott |
2 1 equation

h2n+1
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e For constant force this can be integrated to give the half
time t,,, for hto go from h, to (¥2)h,

e (wRm) " (RY”
i vy

function of n
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