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Lecture 8


Fitting, Fairing and Generalized 
Cylinders 

8.1 Least Squares Method of Curve Fitting 

Example problem 
Given N points Pi, i = 1, 2, ..., N (N � 4), construct an approximating cubic Bézier 
curve that interpolates P1 and PN (end points). 

Solution 

1.	 Parametrization by chord-length method

Let


û1 = 0; 

ˆ ˆui+1 = ui + di+1, i = 1, 2, ..., N − 1	 (8.1) 

where di+1 = |Pi+1 − Pi| is the chord length between two consecutive points. The 
overall chord length is 

N 

d = di (8.2) 
i=2 

The parametric value associated with point Pi 

ˆui = ui/d	 (8.3) 

which is normalized as ui � [0, 1] with u1 = 0 and uN = 1. 

2.	 Linear equations

A cubic Bézier curve is defined as


3 

Q(u) = QiBi,3(u), 0 � u � 1 (8.4) 
i=0 

where Bi,3(u) are the cubic Bernstein polynomials. 
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Obviously, the boundary conditions require Q0 = P1, Q3 = PN . The problem is 
then represented as a linear system with N − 2 equations and 2 unknowns: 

2 

QiBi,3(uj ) = Pj − P1B0,3(uj ) − PN B3,3(uj ) 
i=1 

= Lj , j = 2, 3, ..., N − 1	 (8.5) 

B
or in matrix form 

(N −2)×2 · q2×1 = l(N −2)×1 (8.6) 

3.	 Least Squares Method

Define the mean square error as


E2 = |B · q − l|2	 (8.7) 

then 

E2 = (B · q − l)T (B · q − l)


= q T BT Bq − 2q T BT l + lT l (8.8)


is a function of q and is minimized if we set 

θE2 

= 0 ≤ BT Bq − BT l = 0	 (8.9)
θq 

≤ BT Bq = BT l (normal equations) (8.10) 

≤ q = (BT B)−1BT l (formal solution) (8.11) 

The extension to fitting with B-splines is similarly formulated. 

Notes: 

1. The choice of internal knots in the B-spline basis should reflect any knowledge of deriva
tive discontinuity in the data, as shown in Figure 8.1. 

2. Greater density of knots is needed in rapidly changing parts of the shape. 

3. NAG routines for approximate fitting of cubic B-splines [9] 

(a) Curves: E02BAF 

(b) Surfaces: E02DAF & E02ZAF 

4. NAG routines on least square problems provide more flexibility. 
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Double knot for cubics


Figure 8.1: Set of data reflecting a possible discontinuity of tangent vector. 

8.2 Fairing of Curves and Surfaces 

8.2.1 Properties and Definition 

Motivation: 

1. Spline curves resulting from 

(a) interpolation of points; 
(b) manipulation of polygon, usually need fairing. 

2. Screen plots ( small resolution ) are misleading concerning curve quality. 

3. Full scale plots. 

4. Curvature plots are useful as they allow isolation of problem areas on raster devices. 

Properties of fair curves: [3, 4] 

1. Curvature continuity ( C2 ). 

2. Curvature is almost piecewise linear with as few spans as possible. 

For cubics with simple knots, property (1) is automatically satisfied. If R(t) is reasonably 
parametrized, |R�(t)| is constant, and the curvature 

ρ(s) = 
|R�(t) × R��(t)| 

|R�(t)|3 
∈ |R��(t)| (8.12) 

Property (2) thus requires that |R��(t)| be almost piecewise linear. That means that 
R���(t) needs to be constant, which leads to the following definition of fairness. 

Q

Definition: Q, R are two C2 cubic splines in t � [a, b]. Q is fairer than R if for r � [a, b], 

��� +) − Q��� +) − R���[ (r (r −)]2 � [R���(r (r −)]2 (8.13) 

If r is a knot at which interpolation of data occurs, the above expression means that 
reducing “shear” forces from supports increases the fairness of splines, if we consider 
geometric splines as approximations of physical splines. 
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8.2.2 Curve Interrogation 

We interrogate the fairness of a spline curve by looking into the planar projection of their 
curvature. The signed curvature is defined as 

x��y� − x y
ρ(u) =	 (8.14)3 

(x�2 + y�2) 2 

and it is easy to point out the changes of sign ( inflections ). The curve is fair if a plot of ρ(u), 
which is made up of a few monotone segments, is continuous. The aim of the fairing process is 
to locate the places of maximum discontinuity of ρ�(u) and fair those places (see figure (8.2)). 

κ(u) 

u 

Fair here 

Figure 8.2: Plot of curvature ρ(u) along curve as a function of u. 

8.2.3 Fairing Methods 

Assume that we have a spline curve obtained by interpolation of measured data. The curve 
generally has unwanted behavior. Curve fairing eliminates imperfections by changing data 
within a measurement tolerance. 

1.	 Kjellander’s Method [7]


Procedure


(a) Obtain data points Pj (tj ), 1 � j � N . 

(b) Fit the points with a spline R(t). 
+ 
j )−R���(t−(c) Find the knot where max|R���(t j )| occurs and attempt fairing at PJ where 

j = J corresponds to the worst jump. 

(d) Using Hermite or Bézier, construct cubic interpolation Q(t), which interpolates 

R(tJ −1) = PJ −1 (8.15) 

R(tJ +1) = PJ +1 (8.16) 

R�(tJ −1) , R�(tJ +1) (8.17) 
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Pj−1 

Pj 

Pj+1 

R(t) 

point to 
be faired 

Rnew(t j ) 

Figure 8.3: Kjellander’s fairing method 

(e) Determine new curve 
⎟ 

R(t) if t ⇒� [tJ −1, tJ +1] (8.18)Rnew(t) = 
Q(t) if t � [tJ −1, tJ +1] 

(f) Compute Rnew(tJ ). Notice that Rnew(t) is infinitely differentiable there. 

(g) Construct a spline curve on P1, · · · ,PJ −1,Rnew(tJ ),PJ +1, · · · ,PN . 

(h) The resulting curve is usually fairer at tJ . 

Disadvantages 

•	 Global scheme. 

•	 Repeated interpolation. 

2.	 Farin’s Method [4] 

Recall Boehm’s knot insertion method 
n n+1 

ˆ	 ˆPiNi,4(t) = PiNi,4(t) (8.19) 
i=0 i=0 

ˆ[t0, t1, · · ·] ≤ t0, · · · , tl, t, tl+1, · · ·	 (8.20) 

and the control points are 
P̂i = τiPi + (1 − τi)Pi−1	 (8.21) 

where	
�

⎧ 1 0 � i � l − 3

⎧ 

τi = 0 l + 1 � i � n + 1	 (8.22) 
⎧ 
⎧ t̂−ti 
⎠ l − 2 � i � l 

ti+3 −ti 

Hence 

P̂i = Pi 0 � i � l − 3 

P̂i = Pi−1 l + 1 � i � n + 1 

P̂i = τiPi + (1 − τi)Pi−1 l − 2 � i � l	 (8.23) 
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• Idea of Farin’s method 

(a) Remove a knot first to make curve infinitely differentiable at that location such that 
the curve is fairer now in that area. 

(b) Insert the removed knot back so as to have the same knot vector (if needed; not 
usually necessary). 

• Knot removal 

Knot removal is an inverse process of knot insertion. From Equations (8.23), we have 

ˆPi = Pi, i = 0, 1, · · · , l − 3 
ˆτiPi + (1 − τi)Pi−1 = Pi, i = l − 2, l − 1, l 
ˆPi = Pi+1, i = l, l + 1, · · · , n (8.24) 

Here we have n + 2 equations and n + 1 unknowns, therefore, an approximate solution 
can be obtained by the least squares method. 

A sample solution using Farin’s method: 

ˆPi = Pi, i = 0, 1, · · · , l − 3 
ˆPi = Pi+1, i = l, l + 1, · · · , n (8.25) 

and from the least squares method, we have the following equations for Pl−2,Pl−1 
⎨ ⎛ 

⎨ ⎛ ˆ Pl−3τl−2 0 ⎝ ⎞ Pl−2 − (1 − τl−2) ̂
⎩ ⎜ 

⎩ τl−1 
⎜ Pl−2 = ⎩ ˆ

⎪ 1 − τl−1 �

⎜ (8.26) 
⎪ Pl−1 

� 
0 1 − τl 

Pl−1 ˆ ˆPl − τlPl+1 

or in the matrix form 
A · p = f ≤ AT Ap = AT f (8.27) 

which yields 
p = (AT A)−1AT f (8.28) 

This should be followed by knot insertion to complete the fairing process (if necessary). 

• Knot insertion 

ˆT = [t0, · · · , tl, t, tl+1, · · ·] = [T0, · · · , Tl, Tl+1, Tl+2, · · ·] (8.29) 

where the removed knot t̂ is inserted as the knot Tl+1. Hence the control points of the 
faired curve can be determined by the knot insertion method ( Equation 8.23), where 

t̂ − tl Tl+1 − Tl 

t
τl = = 

l+3 − tl Tl+4 − Tl 

t̂ − tl−1 Tl+1 − Tl−1 

t
τl−1 = = 

l+2 − tl−1 Tl+3 − Tl−1 

t̂ − tl−2 Tl+1 − Tl−2 

t
τl−2 = = (8.30) 

l+1 − tl−2 Tl+2 − Tl−2 
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If we remove all or many of the knots as in Figure 8.5, the other constraints (such as 
deviation) will dominate the problem. 

Let the curve obtained by either interpolation or approximation be 

n 

R(t) = RiNi,4(t) (8.31) 
i=0 

and the curve after knot removal be 

m 
˜ ˜R0(t) = QiNi,4(t) (8.32) 

i=0 

where m < n. Then, (n− m) knots removed before are inserted to make R0(t) have the 
same knot vector as R(t), such that 

n 

R0(t) = QiNi,4(t) (8.33) 
i=0 

where Qi, 0 � i � n, are new control points determined by knot insertion, and Ni,4(t) 
are B-spline basis function over the same knot vector as that of R(t). 

The deviation of two B-spline curves 

n 
� 

|R(t) − R0(t)| = | (Ri − Qi)Ni,4(t)| (8.34) 
i=0 

n 
� 

� max 
i 

|Ri − Qi| 
i=0 

Ni,4(t) (8.35) 

= max 
i 

|Ri − Qi| (8.36) 

remove all

the knots 

Figure 8.5: Deviation of fair curve. 



8.2.4 Surface Fairing 

• Differential Geometry Review 
Let ρ1, ρ2 be principal curvatures, then 

Gaussian curvature G =	 ρ1ρ2 (8.37) 
1 

mean curvature H = 
2 
(ρ1 + ρ2)	 (8.38) 

absolute curvature K = |ρ1| + |ρ2|	 (8.39) 

Local Taylor expansion is 
1
(ρ1x 2 z = + ρ2y 2) + h.o.t.	 (8.40)

2 

1. Elliptic case: G = ρ1ρ2 > 0, see Figure 8.6(a). 

- convex surface 

- one side of tangent plane 

- no inflection 

2. Hyperbolic case: G = ρ1ρ2 < 0, see Figure 8.6(b). 

- non-convex surface (locally) 

- intersection with tangent plane 

- surface inflection 

Z 

κ1 

κ2 

Y


Z	

Y


X	 X


Figure 8.6: (a) Elliptic case; (b) Hyperbolic case. 

Definition 1 Surface inflection at a point P exists iff the surface crosses the tangent plane at 
P.


If G < 0, surface inflection at P.


If G = 0 in a region ( e.g., a “cylinder” ), then surface inflection exists in the region if H

changes sign in the region ( not one point).




Definition 2 Surface curve inflection exists at a point P of a surface iff a planar surface curve 
through P changes sign of its curvature at P. 

Surface curve inflection ≤ Surface inflection 

• Surface Interrogation 

1. Gaussian curvature is not useful in “cylinders” where G = 0. 

2. Mean curvature is zero for minimal surfaces where ρ1 = ρ2. 

3. Absolute curvature does not have such problems. Its curvature plots are useful in study
ing surface imperfections ( e.g., small oscillations ). 

4. Reflection lines for parallel line light source ( on raster screen, mark points where normal 
passes through source ) are useful for global imperfection detection. 

Surface fairing may be performed by fairing auxiliary curves defined for each of the columns 
and rows of the control polyhedron. 



Generalized Cylinders


8.3 Generalized Cylinders: Motivation and Definitions 

Generalized cylinders [12, 13, 15, 8] or sweeps provide greater generality for shape representa
tion than tensor product surfaces. A generalized cylinder is a representation of an elongated 
object viewed as having a main axis (directrix or spine) and a smoothly varying cross section 
(generatrix), as defined in Figure 8.7. Both directrix and generatrix can be open or closed 
(periodic) curves. 

8.3.1 Applications 

Some of the more common applications of generalized cylinders are 

• Representation of measured data (e.g. CAT scans, deformed solids). 

• Representation of manufacturing processes. 

• Representation of blends. 

• Object recognition and scene interpretation in robotics and computer vision. 

• Representation of human and animal shapes. 



Generatrix 

Directrix (Spine) 

Figure 8.7: Generalized cylinder.




8.3.2 Definition 

•	 Given: 

1. A bounded 3-D curve serving as spine. 

2. A cross-sectional plane swept along the spine perpendicular to it so that the spine 
passes through the origin of the 2-D coordinate system on the plane. 

3. A cross-sectional curve on the cross-section plane defined locally in the cross-section 
coordinate system, where the size and shape of the curve may vary with the param
eter along the spine curve. 

•	 The surface swept by the curve is a generalized cylinder. 

•	 Some examples of generalized cylinders and the resulting surfaces are: 

1. Spine = straight line, generatrix = circle =≤ CYLINDER 

2. Spine = circle, generatrix = circle =≤ TORUS 

3. Spine = straight line segment, generatrix = linearly tapering circles =≤ CONE 

Mathematical description of generalized cylinders: 

•	 Directrix (spine): A = A(s), 0 � s � 1. 

•	 Generatrix: C = C(t; s) = [x(t; s), y(t; s), 0], 0 � t � 1. 

•	 Generalized cylinder surface patch: R(s, t) = A(s) + x(t; s)X(s) + y(t; s)Y(s),

where X, Y, Z are orthogonal 3-D unit vectors with the Z tangent to A(s), i.e.


A
�(s)Z(s) = 

|A�(s)| 

As an example, X(s), Y(s) could be chosen equal to the normal and binormal vectors of 
the spine curve A(s) or by rotation of those by some angle, see Figure 8.8. 

Problems with generalized cylinder representation 

When A(s) is straight line, X(s), Y(s), Z(s) should be defined independent of the Frenet 
trihedron, eg. using X(s), Y(s) as constants. 



∂C(t; s)
k̂ 

∂Y (s) 

O 

î 

ĵ 

∂Z(s) 

∂X(s) 

∂A(s) 

t 

Figure 8.8: Components of a generalized cylinder. 

Examples: 

a. Generalized Cylinders with B-Spline Spine and Generatrix Curves 

k 
� 

A(s) = AiNi,K (s) 
i=0 

l q 
� � 

C(t; s) = Cij Ni,L(t)Nj,Q(s) 
i=0 j=0 

= [x(t; s), y(t; s), 0] 

where Ni,K (s), Ni,L(t) and Nj,Q(s) are B-spline basis functions or the Bernstein special
izations. 

b. Pipe Surfaces (See also Section 11.6 of textbook [11]) 

When the generatrix is a circle, the resulting generalized cylinder is a pipe surface. 
The pipe surface PC(r) with radius r can be parametrized using the Frenet trihedron 
(t(t),n(t),b(t)) of the spine curve C(t) as follows: 

P(t, �) = C(t) + r[cos �n(t) + sin �b(t)] (8.41) 

where t � [0, 1] and � � [0, 2�]. 



8.4 Degeneracies of Generalized Cylinders


a. Local Self-Intersection 

b. Global Self-Intersection 

Figure 8.9: Types of self-intersection of generalized cylinders. 

∂X(s) 

n̂ 

∂Y (s) 

t̂ = ∂Z(s) 

[x(t; s) (t; s), 0] 

π 

xi i 

plane 
cross-section 

, y

straight line 

curvature 
center of 

, y

Figure 8.10: Criterion to avoid local self-intersection of generalized cylinders. 

There are two types of the degeneracies of generalized cylinders illustrated in Figure 8.9, 
namely local self-intersection and global self-intersection. A condition to avoid local self-
intersection of generalized cylinders is illustrated in Figure 8.10. The condition is 

2maxt (x 2 + y ) � π2(s) 

for all s, where π(s) is the radius of curvature of the spine. 



�

As a special case, we consider local self-intersection of pipe surfaces (see also Maekawa et 
al. (1998) for details). The partial derivative of the pipe surface with respect to t is given by 

Pt(t, �) = C�(t) + r[cos �n (t) + sin �b�(t)].	 (8.42) 

Equation (8.42) can be rewritten using the Frenet formulae ( n�(t) = |C�(t)|(−ρ(t)t + δ(t)b), 
b�(t) = −|C�(t)|δ(t)n ) as 

Pt(t, �) = |C�(t)|(1 − ρ(t)r cos �)t − r|C�(t)| sin �δ(t)n + r|C�(t)| cos �δ(t)b (8.43) 

P
where ρ(t) and δ(t) are the curvature and torsion of the spine curve. Similarly we can derive 

� as 
P� (t, �) = r[− sin �n(t) + cos �b(t)].	 (8.44) 

The surface normal of the pipe surface can be obtained by taking the cross product of equations 
(8.43) and (8.44) yielding 

Pt × P� = −|C�(t)|r[1 − ρ(t)r cos �][sin �b(t) + cos �n(t)]. (8.45) 

It is easy to observe that the pipe surface becomes singular (the normal vector vanishes) when 
1 − ρ(t)r cos � = 0. Since cos � varies between -1 and 1, there will be no local self-intersection if 
ρ(t)r < 1. Therefore, to avoid local self-intersection we need to find the largest curvature ρmax 

of the spine curve and set the radius of the pipe surface such that r < 1/ρmax. Figure 8.11 
shows an example of local self-intersection. 

The curvature ρ(t) of a space curve C(t), is given by 

|C�(t) × C��(t)|
ρ(t) = . (8.46)

|C�(t)|3 

Thus, to find the largest curvature ρmax we need to locate the critical points of ρ(t), i.e. solve 
the equation ρ�(t) = 0, and decide whether they are local maxima. Then we compare these 
local maxima with the curvature at the end points, i.e. ρ(0) and ρ(1), and obtain the global 
largest curvature. This problem can be solved by elementary calculus. If the spine curve is 
given by a rational Bézier curve, equation ρ�(t) = 0 reduces to a single univariate nonlinear 
polynomial equation. In the case where the spine curve is a rational B-spline, we can extract 
the rational Bézier segments by knot insertion. Cho et al. [1] describe in detail how to obtain 
ρ�(t) = 0 for integral Bézier curves. 

Global self-intersection of a pipe surface involves the following types of intersections: 

1.	 End circle to end circle: Two end circles of the pipe surface touch each other, see Fig
ure 8.12. 

2.	 Body to body: Two different body portions of the pipe surface touch each other, see 
Figure 8.13. 

3.	 End circle to body: One of the end circles touches the body, see Figure 8.14. 
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Figure 8.11: Local self-intersection

The theory of intersections and nonlinear solvers is needed to handle these global intersec-
tion problems and we will discuss these later.

Let ρmax be the maximum curvature of the spine curve, and ree, rbb, reb be the maximum
possible upper limit radius of the pipe surface such that it does not globally self-intersect
between end circle to end circle, body to body and end circle to body of the pipe surface,
respectively. Then we have

Theorem Let p(r) be the pipe surface with spine curve c(t) and radius r. Then p(r) is

nonsingular if and only if r < � = min{1/ρmax, ree, rbb, reb}.
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Figure 8.12: End circle to end circle global self-intersection
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Figure 8.13: Body to body tangential intersection and local self-intersection
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Figure 8.14: End circle to body tangential global and local self-intersections



8.5 Properties of Generalized Cylinders 

1. Unit normal vector 
Rs × Rt

n̂ = 
|Rs × Rt| 

2. Radius of curvature of spine– A(s) = [x, y, z] 

|As|
3 

= π(s)
|As × Ass| 

2 2(x2 + y + zs )s s = 
3

2 

[(xsyss − ysxss)2 + (yszss − zsyss)2 + (zsxss − xszss)2] 
1

2 



8.6 Discrete Generalized Cylinders 

Useful in the interpretation of measured data. The constructive definition for discrete gener
alized cylinders is: 

1. Define a piecewise continuous spine. 

2. Obtain point measurements on cross-section curves on planes perpendicular to spine at 
a discrete set of points on spine. 

3. Construct a local system of coordinates on each cross-section with origin on spine. 

4. Interpolate each cross-section with splines and establish parametric correspondence be
tween cross-sections, see Figure 8.15. 

5. Establish an interpolation rule between cross-sections, x(t; si), y(t; si), z(t; si), �(si), see 
Figure 8.15. 
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Figure 8.15: Cross sections along the spine curve 
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