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Lecture 13

Offsets of Parametric Curves and
Surfaces

13.1 Motivation

Offsets are defined as the locus of points at a signed distance d along the normal of a planar
curve or surface. A literature survey on offset curves and surfaces up to 1992 was carried out
by Pham [24], while the overview of the literature after 1992 and those which were not cited in
[24] is given by Maekawa [14]. Offset curves and surfaces are widely used in various engineering
applications, such as

• Tool path generation for pocket(2.5D), 3D and 5D NC machining [9, 1]. (See Figure 13.1).

Generator Surface

Tool Driving Plane

Center of Ball
Endmill

Ball Endmill
Tool Path

Offset Surface

Figure 13.1: NC machining.
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• Definition of tolerance regions [4, 26, 21]. (See Figure 13.2).

Figure 13.2: Definition of tolerance regions.

• Access space representations in robotics [12]. (See Figure 13.3)
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Figure 13.3: Access space representations in robotics.

3



• Curved plate (shell) representation in solid modeling [23]. (See Figure 13.4)

Figure 13.4: Plate representation.

• Feature recognition through construction of skeletons or medial axes of geometric models
[22, 29]. (See Figure 13.5). The medial axis is made up of boundary offset intersections.

Figure 13.5: Medial Axis.

The concept of offset curves generalizes to

• pipe surfaces when the progenitor is a general 3D curve [18].

• geodesic offsets when the progenitor is curve on a surface [20] [25] [11].
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13.2 Parametric offset curves

13.2.1 Differential geometry of parametric offset curves

• A planar parametric curve r(t) is given by

r(t) = [x(t), y(t)] , t ∈ [0, 1] (13.1)

where x and y are differentiable functions of a parameter t.

• The unit normal vector of a plane curve, which is orthogonal to t, is given by

n = t× ez =
(ẏ(t),−ẋ(t))
√

ẋ2(t) + ẏ2(t)
(13.2)

where ez = (0, 0, 1) is a unit vector perpendicular to the plane of the curve, see Figure
13.6.

• For a plane curve, the Frenet formulae reduce to

dt

ds
= −κn,

dn

ds
= κt (13.3)

where κ is the signed curvature of the curve given by

κ =
(ṙ × r̈) · ez

v3
=

ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3

2

(13.4)

where v = |ṙ(t)| is the parametric speed. The curvature κ of a curve at point P is positive
when the direction of n and ~PC are opposite where C is the center of the curvature of
the curve at point P , see Figure 13.6.

C

P

r(t)

n t

x

y

ez

Figure 13.6: Definitions of unit tangent and normal vectors.
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• A planar offset curve r̂(t) with signed offset distance d to the progenitor r(t) is defined
by

r̂(t) = r(t) + dn(t) (13.5)

where d > 0 corresponds to positive (“exterior”) and d < 0 corresponds to negative
(“interior”) offsets.

• The unit tangent vector of the offset curve (see Figure 13.7 for illustration)

t̂ =
˙̂r

| ˙̂r|
=

1 + κd

|1 + κd|t (13.6)

• The unit normal vector of the offset curve (see Figure 13.7 for illustration)

n̂ = t̂× ez =
1 + κd

|1 + κd|n (13.7)

• Curvature of the offset curve

κ̂ =
κ

|1 + κd| (13.8)

13.2.2 Singularities of parametric offset curves

There are two kinds of singularities on the offset curves, irregular points and self-intersections.

• Irregular points

Isolated points: This point occurs when the progenitor curve with radius R is a circle and
the offset is d = −R.

Cusps: This point occurs at a point t where the tangent vector vanishes.

κ(t) = −1

d
(13.9)

A cusp at t = tc can be further subdivided into [7]:

1. Ordinary cusps when κ̇(tc) 6= 0

2. Extraordinary points when κ̇(tc) = 0 and κ̈(tc) 6= 0.

Note that (1 + κd)/|1 + κd| in equations (13.6) and (13.7) changes abruptly from -1 to 1
when the parameter t passes through t = tc at an ordinary cusp, while at extraordinary
points (1 + κd)/|1 + κd| does not change its value, see Figure 13.7.

Equation (13.9) for r(t) = {x(t), y(t)} can be reduced to

d [ẍ(t)ẏ(t) − ẋ(t)ÿ(t)] −
√

ẋ2(t) + ẏ2(t)
[

ẋ2(t) + ẏ2(t)
]

= 0 (13.10)
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Figure 13.7: Offsets to a parabola r = [t, t2] (thick solid line) with offsets d=-0.3, -0.5, -0.8,
adapted from [5]. At d = −0.3 the tangent and normal vectors of the offset have the same
sense that of the progenitor, while at d = −0.8 they flip directions.

By setting τ 2 = ẋ2 + ẏ2 and if r(t) is a rational polynomial curve, the computation of
cusps can be reduced to system of two nonlinear polynomial equations that can be solved
using the methods of Chapter 10.

Examples (see Figures 13.7 and 13.8)
Given a parabola r = (t, t2), the unit tangent and principal normal vectors are given by

t =
dr

ds
=

dr

dt

dt

ds
=

(1, 2t)√
1 + 4t2

, n = t× ez =
(2t,−1)√
1 + 4t2

The curvature and its derivative are given by

κ(t) =
(ṙ × r̈) · ez

|ṙ|3 =
2

(1 + 4t2)
3

2

, κ̇(t) =
−24t(1 + 4t2)

1

2

(1 + 4t2)3

Since κ̇(0) = 0, κ(t) reaches an extremum at t = 0 and furthermore as κ̈(0) < 0, κ(0) is
a maximum with a curvature value κ(0) = 2. Therefore when d > − 1

2 the offset is non-
degenerate, while when d = − 1

2 , t = 0 is an extraordinary point. Let us solve κ(t) = −1/d
for t which yields

t = ±

√

3
√

4d2 − 1

2
.

We can easily see that if d > −1/2, there is no real root. This means that there is no
singularity as long as radius of curvature is smaller than 2. If d = −1/2, there exists a
single root t = 0, while if d < −1/2 there exist two symmetric values t1, t2.

• Self-intersections
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Self-intersections of an offset curve (see also Figures 13.7 and 13.8) can be obtained by
seeking pairs of distinct parameter values s 6= t such that

r(s) + dn(s) = r(t) + dn(t). (13.11)

Substitution of equation (13.2) in (13.11) yields the system [17]

x(s) +
ẏ(s)d

√

ẋ2(s) + ẏ2(s)
= x(t) +

ẏ(t)d
√

ẋ2(t) + ẏ2(t)

y(s) − ẋ(s)d
√

ẋ2(s) + ẏ2(s)
= y(t) − ẋ(t)d

√

ẋ2(t) + ẏ2(t)
(13.12)

If r(t) is a rational polynomial curve, this system can be converted to a nonlinear poly-
nomial system of four equations in four variables s, t, τ and σ where

τ2 = ẋ2(s) + ẏ2(s) (13.13)

σ2 = ẋ2(t) + ẏ2(t). (13.14)

Such a system can be solved using the IPP algorithm, see also [17]. However s = t
are trivial solutions, and we must exclude them from the system, otherwise a Bernstein
subdivision-based algorithm would attempt to solve for an infinite number of roots. In
this case we have addressed the problem by dividing out the common factor by some
algebraic manipulations [17].

Figure 13.8: Self-intersection of the offset curve of a parabola. Left: Interior offsets to the
parabola r(t) = [t, t2] with d = −0.8 and cutter path; Right: Trimmed interior offsets to the
parabola r(t) = [t, t2] with d = −0.8 and cutter path
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13.2.3 Approximations

• In general, an offset curve is functionally more complex than its progenitor curve because
of the square root involved in the expression of the unit normal vector. Lü [13] for example
has shown that offset of a parabola is a rational curve and its singular point at infinity
was studied by Farouki and Sederberg [8]. However, this result has not been generalized
to higher order curves.

Farouki and Neff [6] have shown that the two-sided offsets of planar rational polynomial
curves are high-degree implicit algebraic curves fo(x, y) = 0 of potentially complex shape.
These equations can not typically be separated into two equations describing interior and
exterior offsets individually. The degree of this implicit offset curve is no = 4n − 2 − 2m,
where n is the degree of polynomial generator curve r = [x(t), y(t)] and m is the degree
of φ(t) = GCD(x′(t), y′(t)). For example the degree of the two-sided offset curve of a
parabola r(t) = (t, t2) is 6 and of a general polynomial cubic curve is 10 with φ(t) a
constant.

• If the progenitor surface is a NURBS curve, then its offset is usually not a NURBS curve,
except for straight lines and circles.

• Because of the wide application of offset surfaces and the difficulty in directly incorpo-
rating such entities in geometric modeling systems, due to their potential analytic and
algebraic complexity, a number of researchers have developed approximation algorithms
for these types of geometries in terms of piecewise polynomial or rational polynomial
functions [27, 10].

• Summary of an Approximation Algorithm [27], see also Figure 13.9:

1. Input is a NURBS curve.

2. Offset each leg of polygon by d.

3. Intersect consecutive legs of polygon to find new vertices.

4. Check deviation of the approximate offset with the true offset using as weights (for
rational function) the weights of the progenitor curve.

5. If the deviation is larger than the given tolerance subdivide the curve into two and
go back to step 1. If the deviation is smaller than the given tolerance stop.

d
d

d

Approximated Offset Curve

Progenitor Curve

Figure 13.9: Offset curve approximation.
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13.3 Parametric offset surfaces

13.3.1 Differential geometry of parametric offset surfaces

• Definition

A parametric offset surface r̂(u, v) is a continuum of all points at a constant distance d
along normal to another parametric surface r(u, v) and defined as

r̂(u, v) = r(u, v) + dn(u, v) (13.15)

where d may be a positive or negative real number and n is the unit normal vector of
r(u, v).

• Sign convention for normal curvature

The normal curvature is typically considered positive if its associated center of curvature
is opposite to the direction of the surface normal.

• Relation between n and n̂ [28]

If n̂(u, v) is the unit normal vector of r̂(u, v), then the relation between n and n̂ is given
by

Ŝn̂ = (1 + dκmax)(1 + dκmin)Sn (13.16)

where Ŝ = |r̂u× r̂v| and S = |ru×rv| or expanding the right hand side of equation (13.16)
and using the definitions of Gaussian curvature K and mean curvature H

K = κmaxκmin, H =
κmax + κmin

2
(13.17)

equation (13.16) can be rewritten as follows:

Ŝn̂ = S(1 + 2Hd + Kd2)n (13.18)

If we take the norm of equation (13.16), we obtain

Ŝ = S|(1 + dκmax)(1 + dκmin)| (13.19)

and substituting Ŝ into equation (13.16) yields

n̂ =
(1 + dκmax)(1 + dκmin)

|(1 + dκmax)(1 + dκmin)|n (13.20)

From this relation n and n̂ are collinear but may be directed in opposite directions, if
dκmax < −1 or dκmin < −1. This occurs when the offset is taken towards the concave

region of the progenitor.

• Offsetting towards concave region of a surface is equivalent to taking the offset d > 0
where κmin < 0 and d < 0 where κmax > 0, provided the above sign convention is used.
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• Gaussian and Mean Curvatures

K̂ =
K

1 + 2Hd + Kd2
(13.21)

Ĥ =
H + Kd

|1 + 2Hd + Kd2| (13.22)

• Principal Curvatures

κ̂max =
(1 + dκmin)κmax

|1 + dκmax||1 + dκmin|
(13.23)

κ̂min =
(1 + dκmax)κmin

|1 + dκmax||1 + dκmin|
(13.24)

Given an offset distance d, the critical curvature is defined as κcrit = −1/d then three
categories arise [5]:

κmax > κmin > κcrit: The normal vector of the progenitor and its offset are directed in the
same direction. Also the sign of Gaussian and principal curvatures of the offset are the same
that of the progenitor.

κmax > κcrit > κmin: The normal vector of the progenitor and its offset are directed in the
opposite direction. Also the sign of Gaussian and maximum principal curvatures of the offset
are opposite to that of the progenitor, while the sign of the minimum principal curvature of
the offset is the same to that of the progenitor.

κmin < κmax < κcrit: The normal vector of the progenitor and its offset are directed in the
same direction, while the sign of both principal curvatures of the offset are opposite that of the
progenitor and thus the sign of Gaussian curvature of an offset remains the same as that of the
progenitor.

13.3.2 Singularities of parametric offset surfaces

Figure 13.10: Offset surface (left), region bounded by self-intersection curve (center) and
trimmed offset surface (right) of elliptic paraboloid z = 1

2(1.75x2 + 2y2) with d = 0.6.

• In NC machining, the cutter radius must not exceed the smallest concave principal
radius of curvature of the surface to avoid gouging [9].

11



x

y z

Figure 13.11: Self-intersection curves of elliptic paraboloid (α = 2, β = 4) with d = 0.3. The
dot dashed line in the figure is a set of points of self-intersection curve in the xy-plane mapped
onto the progenitor surface. A pair of thin solid straight lines emanating from two distinct
points on the surface r(s, t), r(u, v) and intersecting along the parabola are the pairs of vectors
dn(s, t) and dn(u, v).

• Critical Offset Distance:

The largest magnitude of offset distance without degeneracy is called critical offset dis-
tance dcrit. When the offset is positive, in the absence of degeneracy due to global
properties, the maximum absolute value of the negative minimum principal curvature
on the surface determines dcrit = 1

max(|κmin|)
. When the offset is negative, in the ab-

sence of degeneracy due to global properties, the minimum absolute value of the positive
maximum principal curvature on the surface determines dcrit = 1

max(κmax) . versa.

• Ridges:

It is apparent from equation (13.20) that offset surfaces become singular at points called
ridges. They are defined as a vector-valued mapping of two implicit curves in the uv-
parametric space to 3D space via the mapping (13.15), which satisfy κmax(u, v) = − 1

d
or

κmin(u, v) = − 1
d

[9].

• Self-intersections:

Self-intersections of an offset surface are defined by finding pairs of distinct parameter
values (s, t) 6= (u, v) such that

r(s, t) + dn(s, t) = r(u, v) + dn(u, v) (13.25)

see also Figures 13.10, 13.11.

For parametric surfaces r(u, v) = [x(u, v), y(u, v), z(u, v)]

x(s, t) +
ys(s, t)zt(s, t) − yt(s, t)zs(s, t)

S(s, t)
d = x(u, v) +

yu(u, v)zv(u, v) − yv(u, v)zu(u, v)

S(u, v)
d(13.26)
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y(s, t) +
xt(s, t)zs(s, t) − xs(s, t)zt(s, t)

S(s, t)
d = y(u, v) +

xv(u, v)zu(u, v) − xu(u, v)zv(u, v)

S(u, v)
d(13.27)

z(s, t) +
xs(s, t)yt(s, t) − xt(s, t)ys(s, t)

S(s, t)
d = z(u, v) +

xu(u, v)yv(u, v) − xv(u, v)yu(u, v)

S(u, v)
d(13.28)

Since we can fix one of the four variables (s, t, u, v), the system of equations (13.26) to
(13.28) yields three equations with three unknowns.

We can replace S(s, t) and S(u, v) by auxiliary variables σ and ω such that σ2 = S2(s, t)
and ω2 = S2(u, v).

Consequently the system involving polynomials and square root of polynomials has been
reduced to a nonlinear polynomial system consisting of five equations with five unknowns
as follows:

σω[x(s, t) − x(u, v)] + d[ωNx(s, t) − σNx(u, v)] = 0 (13.29)

σω[y(s, t) − y(u, v)] + d[ωNy(s, t) − σNy(u, v)] = 0 (13.30)

σω[z(s, t) − z(u, v)] + d[ωNz(s, t) − σNz(u, v)] = 0 (13.31)

σ2 − N2
x(s, t) − N 2

y (s, t) − N 2
z (s, t) = 0 (13.32)

ω2 − N2
x(u, v) − N 2

y (u, v) − N 2
z (u, v) = 0 (13.33)

where

Nx(s, t) = ys(s, t)zt(s, t) − yt(s, t)zs(s, t) (13.34)

Nx(u, v) = yu(u, v)zv(u, v) − yv(u, v)zu(u, v) (13.35)

Ny(s, t) = xt(s, t)zs(s, t) − xs(s, t)zt(s, t) (13.36)

Ny(u, v) = xv(u, v)zu(u, v) − xu(u, v)zv(u, v) (13.37)

Nz(s, t) = xs(s, t)yt(s, t) − xt(s, t)ys(s, t) (13.38)

Nz(u, v) = xu(u, v)yv(u, v) − xv(u, v)yu(u, v). (13.39)

Since s = u, t = v are trivial solutions, we must exclude them from the system, otherwise a
Bernstein subdivision-based algorithm would attempt to solve for an infinite number of roots.
For the self-intersections of a normal offset of a planar polynomial curve case we have addressed
this problem by dividing out the common factor by some algebraic manipulations [17]. However,
for the surface case we can not divide out these factors from the system directly, since terms
x(s, t)−x(u, v), y(s, t)−y(u, v) and z(s, t)−z(u, v) do not necessarily exactly involve the factors
s − u and t − v. See [16] for details for how to exclude trivial solutions.

13.3.3 Tracing algorithm

Finding the starting points for tracing the self-intersection curve is very similar to the same
problem for surface-surface intersection in Section 9.8.2. By considering that the self-intersection
curve is a function of another parameter τ , s = s(τ), t = t(τ), u = u(τ), v = v(τ), and by
differentiating the equation for self-intersection curves of an offset with respect to τ yields

r̂s
ds

dτ
+ r̂t

dt

dτ
= r̂u

du

dτ
+ r̂v

dv

dτ
(13.40)
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If we denote r̂(s, t) = [x̂(s, t), ŷ(s, t), ẑ(s, t)] and r̂(u, v) = [x̂(u, v), ŷ(u, v), ẑ(u, v)], we can solve
vector equation (13.40) for ds

dτ
, dt

dτ
, du

dτ
and dv

dτ
. This is a linear system of 3 equations in 4

unknowns ṡ, ṫ, u̇, v̇. The solution of this underconstrained problem is given by

ds

dτ
= ζ

∣

∣

∣

∣

∣

∣

∣

x̂t x̂u x̂v

ŷt ŷu ŷv

ẑt ẑu ẑv

∣

∣

∣

∣

∣

∣

∣

= ζ|A1| (13.41)

dt

dτ
= −ζ

∣

∣

∣

∣

∣

∣

∣

x̂s x̂u x̂v

ŷs ŷu ŷv

ẑs ẑu ẑv

∣

∣

∣

∣

∣

∣

∣

= −ζ|A2| (13.42)

du

dτ
= −ζ

∣

∣

∣

∣

∣

∣

∣

x̂s x̂t x̂v

ŷs ŷt ŷv

ẑs ẑt ẑv

∣

∣

∣

∣

∣

∣

∣

= −ζ|A3| (13.43)

dv

dτ
= ζ

∣

∣

∣

∣

∣

∣

∣

x̂s x̂t x̂u

ŷs ŷt ŷu

ẑs ẑt ẑu

∣

∣

∣

∣

∣

∣

∣

= ζ|A4|. (13.44)

Here ζ is an arbitrary non-zero factor that can be chosen to provide arc-length parametrization
in the parameter domain as follows:

dτ =
√

ds2 + dt2 =
√

ζ2(|A1|2 + |A2|2)dτ (13.45)

hence

ζ = ± 1
√

|A1|2 + |A2|2
. (13.46)

The points of the self-intersection curves are computed successively by integrating the initial
value problem for a system of nonlinear differential equations (13.41) to (13.44) using the
variable step size and variable order Adams method [2]. The sign of ζ determines the direction
in which the solution proceeds. See Figures 13.12 and 13.13 for illustrations.

13.3.4 Self-intersections of offsets of explicit quadratic surfaces

Although offset surfaces are widely used in various engineering applications, their degenerating
mechanism is not well known in a quantitative manner. We know that any regular surface can
be locally approximated in the neighborhood of a point p by the explicit quadratic surface of
the form r(x, y) = [x, y, 1

2(αx2 +βy2)]T to the second order where −α and −β are the principal
curvatures at point p. Therefore investigations of the self-intersecting mechanisms of the offsets
of explicit quadratic surfaces due to differential geometry properties lead to an understanding
of the self-intersecting mechanisms of offsets of regular parametric surfaces.

• Locally any surface can be expressed as a graph of a differentiable function [3]. Given
a point p on the parametric surface S, we can set an orthogonal Cartesian coordinate
system xyz such that xy-plane coincides with the tangent plane of S at p and z-axis is
along the normal at p. It follows that in the neighborhood of p any parametric surface
S can be represented in the form r(x, y) = [x, y, h(x, y)]T , where h is a differentiable
function with h(0, 0) = hx(0, 0) = hy(0, 0) = 0.
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t (v)

s (u)
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Figure 13.12: Self-intersection curves of the offset of bicubic patch when d=0.09. Figure (a)
shows the pre-images of the self-intersection curves in parameter domain. The same symbols
are mapped to the same points in the offset surface. Figure (b) shows the mapping of the
self-intersection curves in the parameter domain onto the progenitor surface. Figure (c) shows
the offset surface and the self-intersection curves.
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s (u)

t (v)

(a)

x
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(b)

x
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Figure 13.13: Self-intersection curves of the offset of bisextic patch when d=-0.08. Figure (a)
shows the pre-images of the self-intersection curves in parameter domain. The same symbols
are mapped to the same points in the offset surface. Figure (b) shows the mapping of the
self-intersection curves in the parameter domain onto the progenitor surface. Figure (c) shows
the offset surface and the self-intersection curves.
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• We can Taylor expand h(x, y) about (0, 0) as follows

h(x, y) = h(0, 0) + [hx(0, 0)x + hy(0, 0)y] +
1

2!
[hxx(0, 0)x2 + 2hxy(0, 0)xy + hyy(0, 0)y

2]

+
1

3!
[hxxx(0, 0)x3 + 3hxxy(0, 0)x

2y + 3hxyy(0, 0)xy2 + hyyy(0, 0)y
3] + R (13.47)

where lim(x,y)→(0,0) R(x2 + y2)−
3

2 = 0.

• If we take into account that h(0, 0) = hx(0, 0) = hy(0, 0) = 0, we can consider

h(x, y) =
1

2
[hxx(0, 0)x2 + 2hxy(0, 0)xy + hyy(0, 0)y

2] (13.48)

as the second order approximation of h(x, y).

• Let us denote E, F , G and L, M , N as coefficients of the first and second fundamental
forms of the surface. If we assume further that x and y axes are directed along the
principal directions at (0, 0, 0), assuming (0, 0, 0) is not an umbilic, then F = M = 0 [3].

It follows that hxy(0, 0) = 0, since M = hxy/
√

1 + h2
x + h2

y. Although we have assumed

(0, 0) is not an umbilic, we can show that hxy(0, 0) will also vanish when the point is an
umbilic [19]. Also the principal curvatures at p can be expressed as follows [3]:

if hxx(0, 0) > hyy(0, 0); κmin = −L

E
= −hxx(0, 0), κmax = −N

G
= −hyy(0, 0)(13.49)

if hxx(0, 0) < hyy(0, 0); κmax = −L

E
= −hxx(0, 0), κmin = −N

G
= −hyy(0, 0)(13.50)

• If we set α = hxx(0, 0) and β = hyy(0, 0) (thus −α = and −β = are principal curvatures)
and assuming that p is a nonplanar point, the surface can be written locally as a second
order approximation in the nonparametric form given by

z =
1

2
(αx2 + βy2) (13.51)

Its corresponding parametric form is

r(x, y) = [x, y,
1

2
(αx2 + βy2)]T (13.52)

In the sequel we assume that d > 0, β > 0 and α ≤ β without loss of generality. It follows
that at (0,0,0) equation (13.50) holds and the x-axis will be the direction of maximum
principal curvature and y-axis will be the direction for the minimum principal curvature.
If α and β vanish at the same time, then the surface is part of a plane. Equation (13.51)
or (13.52) represents explicit quadratic surfaces which can be categorized into four
types according to combinations of α and β as listed in Table 13.1.

• The four types of explicit quadratic surfaces are depicted in Figure 13.14.

Theorem [15] Self-intersection curves of offsets of the explicit quadratic surfaces r(x, y) =
[x, y, 1

2(αx2 + βy2)]T and their corresponding curves in the xy-plane are as follows:
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Signs of α and β Types of Surfaces Types of Points at p

αβ < 0 Hyperbolic Paraboloid Hyperbolic Point

αβ > 0 and α 6= β Elliptic Paraboloid Elliptic Point

α = β Paraboloid Umbilical Point

α = 0 or β = 0 Parabolic Cylinder Parabolic Point

Table 13.1: Four types of explicit quadratic surfaces according to α and β

Figure 13.14: Explicit quadratic surfaces z = 1
2(αx2+βy2). (a) Top left: Hyperbolic paraboloid

(α = −3, β = 1). (b) Top right: Elliptic paraboloid (α = 1, β = 3). (c) Bottom left: Paraboloid
(α = β = 3). (d) Bottom right: Parabolic cylinder (α = 0, β = 3).
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1. An offset of hyperbolic paraboloid (α < 0 < β) self-intersects only in the y-direction when
1
β

< d. The resulting self-intersection curve is a parabola given by

z =
αβ

2(β − α)
x2 +

(βd)2 + 1

2β
, y = 0 (13.53)

(

−β − α

αβ

√

(βd)2 − 1 ≤ x ≤ β − α

αβ

√

(βd)2 − 1

)

and its corresponding curve in the parameter space (i.e., xy-plane) is an ellipse when
|α| 6= β or a circle when |α| = β, (see Figure 13.15 (a)) given by

x2

(√
(βd)2−1

α

)2 +
y2

(√
(βd)2−1

β

)2 = 1 (13.54)

2. An offset of an elliptic paraboloid (0 < α < β) self-intersects only in the y-direction
when 1

β
< d < 1

α
and self-intersects in both x and y-directions when 1

α
< d. The self-

intersection curve which self-intersects in the y-direction is a parabola (see Figure 13.11)
given by equation (13.54) and the corresponding curve in the xy-plane is an ellipse (see
Figures 13.11, 13.15 (b)) given by equation (13.54). The self-intersection curve which
self-intersects in the x-direction is also a parabola given by

z =
αβ

2(α − β)
y2 +

(αd)2 + 1

2α
, x = 0 (13.55)

(

−α − β

αβ

√

(αd)2 − 1 ≤ x ≤ α − β

αβ

√

(αd)2 − 1

)

its corresponding curve in the xy-plane is an ellipse (see Figures 13.15 (c), (d)) given by

x2

(√
(αd)2−1

α

)2 +
y2

(√
(αd)2−1

β

)2 = 1 (13.56)

3. An offset of a paraboloid (0 < α = β) self-intersects in all directions, when 1
β

= 1
α

< d.

The self-intersection curve is a point (0, 0, (βd)2−1
2β

), and its corresponding curve in the
xy-plane is a circle (see Figure 13.15 (e)) given by

x2 + y2 =

(

√

(βd)2 − 1

β

)2

(13.57)

4. An offset of a parabolic cylinder (α = 0 < β) self-intersects only in the y-direction when
1
β

< d. The resulting self-intersection curve is a straight line in the xz-plane

z =
(βd)2 − 1

2β
, y = 0 (13.58)

and its corresponding curves in the xy-plane (see Figure 13.15 (f)) are two straight lines
given by

y = ±
√

(βd)2 − 1

β
(13.59)
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(a) x 

 y 

  -0.67    -0.33     0.00     0.33     0.67  
  -0.50  

  -0.17  

   0.17  

   0.50  

                                                                                
                                                                       

(b) x 

 y 

  -0.67    -0.33     0.00     0.33     0.67  
  -0.50  

  -0.17  

   0.17  

   0.50  

                                                                                
                                                                       

(c) x 

 y 

  -0.67    -0.33     0.00     0.33     0.67  
  -0.50  

  -0.17  

   0.17  

   0.50  

                                                                                
                                                                       

(d) x 

 y 

  -0.67    -0.33     0.00     0.33     0.67  
  -0.50  

  -0.17  

   0.17  

   0.50  

                                                                                
                                                                       

(e) x 

 y 

  -0.67    -0.33     0.00     0.33     0.67  
  -0.50  

  -0.17  

   0.17  

   0.50  

                                                                                
                                                                       

(f) x 

 y 

  -0.67    -0.33     0.00     0.33     0.67  
  -0.50  

  -0.17  

   0.17  

   0.50  

Figure 13.15: Self-intersection and ridge curves of offsets of explicit quadratic surfaces. The
solid lines correspond to self-intersection curves which degenerates in y-direction. The dashed
lines correspond to κmin(x, y) = − 1

d
. The dot dashed lines correspond to self-intersection curves

which degenerates in x-direction. The dot dot dashed lines correspond to κmax(x, y) = − 1
d
.

Symbols × and ∗ represent the locations of generic lemon type umbilic and non-generic umbilic.
(a) hyperbolic paraboloid (α = −2, β = 2, d = 0.6) (b) elliptic paraboloid (α = 1.75, β = 2,
d = 0.55) (c) elliptic paraboloid (α = 1.75, β = 2, d = 0.6) (d) elliptic paraboloid (α = 1.75,
β = 2, d = 0.65) (e) paraboloid (α = β = 2, d = 0.6) (f) parabolic cylinder (α = 0, β = 2,
d = 0.6)

20



13.3.5 Approximations

Parametric Offset Surface Approximation Algorithm [23]. (See Figure 13.16)

1. Input: NURBS surface patch.

2. Offset each vertex of polygon by d with unit normal vector given by

Nij =
1

8

8
∑

i=1

ni (13.60)

3. Check deviation of the approximate offset with the true offset (using the same weights
for rational functions as the progenitor).

4. If the deviation is larger than the given tolerance subdivide the surface into four and go
back to step 1. If the deviation is smaller than the given tolerance stop.

Nij

n k

Nij = (1/8)Σ n
k=1

8

k

Figure 13.16: Offset surface approximation.

21



Bibliography

[1] Y. J. Chen and B. Ravani. Offset surface generation and contouring in computer-aided
design. Journal of Mechanisms, Transmissions, and Automation in Design, Transactions

of the ASME, 109(3):133–142, March 1987.
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