MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 13.472J/1.128J/2.158J/16.940J
 Computational Geometry
 Spring Term, 2003
 Problem Set 5 on Solid Modeling

Issued: $\operatorname{Day}[18 \square$
Due: Day $23 \square$
Weight: 15% of total grade
Individual Effort

Problem 1. Can this incidence graph be a valid two-manifold solid's boundary? If yes, sketch a 3-D figure satisfying the incidence graph, otherwise explain. Below, F_{i} are planar faces, e_{j} are edges, and V_{k} are vertices.

Problem 2. Can this incidence graph be a valid two-manifold solid's boundary? If yes, sketch a 3-D figure satisfying the incidence graph, otherwise explain. Below, F_{i} are planar faces, e_{j} are edges, and V_{k} are vertices.

Problem 3. Given a cube, which has one solid volume, six faces, twelve edges, and eight vertices, please develop a procedure, using Euler operators, to subdivide it so that each subdivided 3-D solid is a tetrahedron and every tetrahedron is connected to one point. Draw a figure that demonstrates your result.

Problem 4. Verify the fact that a complete binary tree with depth k has $2^{k+1}-1$ nodes. How many nodes are there in a complete quadtree and a complete octree?
Problem 5. Show that for the octree representation of a homogeneous object, the storage requirements are a function of the surface area of boundary, rather than volume.

