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1 Preamble

In engineering analysis, we must often evaluate integrals defined over a complex domain or in a
high-dimensional space. For instance, we might wish to calculate the volume of a complex three-
dimensional part for an aircraft. We might even wish to evaluate a performance metric for an
aircraft expressed as an integral over a very high-dimensional design space. Unfortunately, the
deterministic integration techniques considered in the nutshell Integration are unsuited for these
tasks: either the domain of integration is too complex to discretize, or the function to integrate is
too irregular, or the convergence is too slow due to the high dimension of the space — the curse of
dimensionality. In this nutshell, we consider an alternative integration technique based on random
variates and statistical estimation: Monte Carlo integration.

We introduce in this nutshell the Monte Carlo integration framework. As a first application we
consider the calculation of the area of a complex shape in two dimensions: we provide a statistical
estimator for the area, as well as associated a priori and a posteriori error bounds in the form of
confidence intervals; we also consider extension to higher space dimensions. Finally, we consider
two different Monte Carlo approaches to integration: the “hit or miss” approach, and the sample
mean method; for simplicity, we consider univariate functions.

Prerequisites: probability theory; random variables; statistical estimation.

2 Motivation: Example

Let us say that we are given a (pseudo-)random variate generator for the standard uniform dis-
tribution. How can we take advantage of this sample realization to estimate the value of the
mathematical constant π? We first rephrase the question: how can we estimate the area of the unit
disk — π — shown in Figure 1? How do we exploit our random variates? What can we say about
the accuracy of our estimate? How does the cost of the estimate scale with the desired accuracy?
The material in this nutshell will help you answer these questions.
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Figure 1: The estimation of π posed as the estimation of the area of the unit disk.

3 Area Estimation

We generalize our π question: we wish to estimate the area, AD, of an arbitrary-shaped two–
dimensional domain, D ⊂ R2, as illustrated in Figure 2. We now describe the associated Monte
Carlo area estimation procedure in three steps.

y = b2

D

R
y = a2

x = a1 x = b1

Figure 2: Illustration of a generic area estimation problem.

As the first step of Monte Carlo area estimation, we formulate the (deterministic) area esti-
mation problem as the expectation of a random variable. Towards this end, we first introduce a
rectangular region R ≡ [a1, b1] × [a2, b2] in which D resides, as shown in Figure 2; we denote the
area of R by AR, and we note that AR = (b1 − a1)(b2 − a2). We may think of R as a background,
or bounding, rectangle. For instance, in our π-estimation example illustrated in Figure 1, D is the
unit disk centered at the origin, and R may be chosen as the square [−1, 1]2 ≡ [−1, 1] × [−1, 1] of
area AR = 4. (Any rectangle which includes D suffices, however we shall latter see that smaller is
better.)

We now suppose that we randomly choose a point in the rectangle R. We describe the coordinate
of the point as (X,Y ) for X (respectively Y ) a univariate continuous uniform random variable over
the interval (a1, b1) (respectively (a2, b2)). We now observe — from the properties of the continuous
uniform distribution — that the probability that our point (X,Y ) resides in the region D is the
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ratio of the area of the two regions:

A
P ((X,Y ) ∈ D

D) = .
AR

We next introduce a Bernoulli random variable,{
0, (X,Y )

B =
6∈ D

;
1, (X,Y ) ∈ D

note that B is a function of the random variables (X,Y ). We now note that the expectation of the
random variable B is

A
E(B) = P X, Y ) ∈ D

(( D) = θ
AR
≡ ,

where θ is the usual Bernoulli parameter (associated with B). We have thus recast the area-
estimation problem as a mean-estimation problem — more precisely, estimation of the Bernoulli
parameter θ. We have studied the latter extensively in the nutshell Random Variables.

CYAWTP 1. Let D be the region which results from the intersection of two unit disks, one of
which is centered at (0, 0), and the other of which is centered at (1, 1). Sketch the region D.
Introduce and sketch the rectangle R of smallest area and aligned with the coordinate axes which
includes D. Evaluate AR.

In the second step of Monte Carlo area estimation, we design a procedure to generate random
variates of the Bernoulli random variable B. Here we employ a two-stage strategy. We first generate
a (pseudo-)random variate of the pair of (independent) uniform random variables

(X,Y )→ (x, y). (1)

We next determine if (x, y) is in D, and generate a (pseudo-)random variate of B, b, according to{
0, (x, y) D

b =
6∈

. (2)
1, (x, y) ∈ D

We note that there are two key ingredients to generate a random variate of B. The first ingredient
is a (pseudo-)random variate generator for uniform random variables; as discussed in the nutshell
Random Variables, a (pseudo-)random variate generator for the standard uniform distribution is
readily available, and simple transformations allow us to subsequently consider any interval. The
second ingredient is a computational implementation of the rule (2) which, for any (x, y) ∈ R,
determines whether (x, y) is in D; the rule often takes the form of a simple algebraic relation that
reflects the geometry of the region D. Note that our rule allows us to evaluate b even though we do
not know — and indeed, wish to estimate — the Bernoulli parameter, θ. As an example, we again
consider our π-estimation problem of Figure 1: we may characterizeD asD ≡ {(x, y) | x2+y2 ≤ 12};
the value of the Bernoulli random variate is then determined from

b =

{
0, x2 + y2 > 1

. (3)
1, x2 + y2 ≤ 1
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CYAWTP 2. Consider the region D introduced in CYATWP 1. Identify the appropriate pa-
rameters (respective lower and upper bounds) of the uniform random variables X and Y . Identify
the algebraic rule, similar to (3) for the π-estimation problem, which determines the value of the
“not–in” vs “in” Bernoulli random variate.

In the third step of Monte Carlo area estimation, we apply standard statistical techniques to
estimate the mean of B, θ, from which we can then deduce the desired area as AR = AD · θ. We
follow the procedure introduced in the nutshell Random Variables for estimation of a Bernoulli
parameter. We first generate, by repeated application of the two-stage procedure described above,
n random variates of B, (B → bi)i=1,...,n. We then construct our mean estimate from the sample
mean,

1
θ̂n =

∑n
bi .

n
i=1

Finally, we appeal to the relationship AD = AR · θ to provide the estimate of the area AD,

ˆ · ˆ(AD)n = AR θn.

CYAWTP 3. Consider the region D introduced in CYATWP 1. We invoke the procedure
described in CYATWP 2 to obtain n = 20 Bernoulli random variates,

0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1.

ˆ ˆEvaluate the mean estimate θn and the area estimate (AD)n.

We now proceed with an a priori error analysis of the Monte Carlo estimate. Towards this
ˆ ˆ ˆend, we recall that our mean estimate θn is a realization of the sample-mean estimator Θn, Θn =

1 ∑n ˆ
i=1Bi. We recall that Θn is of mean θ and variance θ(1 − θ)/n. Furthermore, for sufficientlyn

large n,

P

(
|θ − Θ̂n| ≤ zγ

√
θ(1− θ)

γ
n

)
≈ . (4)

Hence, with confidence level γ,

|θ − θ̂n| . (zγ
√
θ(1− θ))n−1/2 (5)

Here “an . bn” is a shorthand for “an < bn as n→∞.” We now mutiply (5) through by AR and
recall that AD = AR · θ to obtain our absolute (γ-confidence) statistical a priori error bound,

|AD − ˆ(AD)n| .

(
zγAR

√
AD
AR

(
1− AD

n
AR

))
−1/2 , (6)

We recognize C ≡ zγAR

√
AD
AR

(1− AD ) as the constant of absolute error convergence, and p = 1/2AR

as the convergence rate. We may also divide the expression (6) through by AD to obtain a relative
(γ-confidence) statistical a priori error bound,

|AD − ˆ(AD)n| .
AD

(
zγ

√
1−AD/AR

n
AD/AR

)
−1/2 , (7)
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where we shall refer to Crel ≡
√

1−AD/AR as the constant of relative error convergence.AD/AR

We make a few observations:

ˆ1. The statistical error bound |AD − (AD)n| tends to 0 as n→∞: our Monte Carlo estimate is
convergent.

2. The convergence rate, or order, of the Monte Carlo method is p = 1/2, which is, unfortunately,
rather slow.

3. The constant of the relative error convergence is Crel =
√

1−AD/AR ; we expect the quality ofAD/AR

Monte Carlo estimate, in the sense of relative error, to degrade when AD/AR (= θ) is small.

4. The constant of the relative error convergence depends only on the ratio of the two areas
AD/AR (= θ) and is independent of the particular shape of AD: the (bound for the) error in
the Monte Carlo estimate is independent of the geometric complexity of the region D.

5. The convergence rate, p = 1/2, is independent of the dimension of the problem, as we discuss
further in Section 4.

We will focus exclusively in what follows on the more demanding relative error.

We now take the (base-10) logarithm of the a priori error bound (7) to obtain the logarithmic
convergence asymptote

(
log

(
|AD

10

− ÂD)n|
AD

)
. log10(Crel)−

1
log10(n) ;

2

we anticipate our logarithmic convergence asymptote to have an intercept of order log10(Crel) and a
slope of −p = −1/2. We present in Figure 3 a typical logarithmic convergence curve and logarithmic
convergence asymptote associated with our π-estimation problem. Here “typical” is in reference to
the random nature of our estimate: each realization shall be different. On a related note, because
the error associated with the Monte Carlo estimate is noisy (within a single realization), here we
redefine the logarithmic convergence asymptote as the straight line that bounds the error from
above.

CYAWTP 4. Consider a region described in polar coordinates as

2
Dβ ≡

{
(r, θ) | r ≤

3
+

1

3
cos(4βθ), 0 ≤ θ ≤ π

,
2

}
where r ≡

√
x2 + y2, tan(θ) = y/x, and β is a positive integer parameter. Sketch, in two separate

plots, the regions Dβ1 and Dβ2 associated with β1 = 1 and β2 = 4, respectively. Now suppose we
invoke our Monte Carlo procedure to estimate the two areas ADβ and ADβ ; for each case, we

1 2

choose for our background (bounding) rectangle R ≡ [0, 1]2. Sketch the logarithmic convergence
asymptote for the two area estimates and compare the respective intercepts and slopes. (Note that
we can readily show ADβ = ADβ = π/8.)

1 2

Numerical Experiment 5. Invoke the Monte Carlo Area GUI and empirically confirm your
predictions of CYATWP 4.
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(Â

D
) n
|

A
D

)

 

 

0.5

conv curve
conv asymptote

Figure 3: Convergence of the Monte Carlo area estimate for a realization of the π-estimation
problem.

CYAWTP 6. Suppose we wish to estimate (i ) the area of the square D 2
1

2
≡ [0.2, 0.7] , and (ii ) the

area of the square D2 ≡ [0.2, 0.3] , in both cases for a background rectangle R ≡ [0, 1]2. Sketch the
relative logarithmic convergence asymptote for these two area estimates and compare the respective
intercepts and slopes.

Numerical Experiment 7. Invoke the Monte Carlo Area GUI and empirically confirm the results
of CYATWP 6.

We now proceed with an a posteriori error analysis of our Monte Carlo estimate. An a priori
error estimate is typically formulated in terms of unknown quantities — in our case, the mean
θ — and serves to provide general insight into the requirements for, and general behavior of,
convergence. In contrast, an a posteriori error bound is formulated in terms of known or readily
calculable quantities and serves to certify a particular instantiation — a particular estimate for a

ˆparticular problem. To construct an a posteriori error bound, we first recall that θ ∈ [CIθ]n(Θn, γ)
with probability γ for

ˆ z2
Θ γ

ˆ n +
[CIθ]n(Θn, γ) ≡

 2n − zγ
√

Θ̂n(1−Θ̂n)
n +

z2γ
4n2

1 +
z2γ
n

,
Θ̂n +

z2γ
2n + zγ

√
Θ̂n(1−Θ̂n)

n +
z2γ

4n2

1 +
z2γ

;

n


ˆhere zγ = 1.96 for the (typical) choice γ = 95%. We then consider a realization of [CIθ]n(Θn, γ),

ˆ ˆ[ciθ]n(θn, γ), such that θ ∈ [ciθ]n(θn, γ) with confidence level γ:

z
n

γ


2

θ γ

ˆ[ciθ]n(θn, ≡  ˆ +
) 2n − zγ

√
θ̂n(1−θ̂n)

n +
z2γ

4n2

1 +
z2γ
n

,
θ̂n +

z2γ
2n + zγ

√
θ̂n(1−θ̂n)

n +
z2γ

4n2

1 +
z2γ

.

n



We may finally appeal to the relationship AD = A


R · θ to obtain a confidence interval for AD,

[ciAD ]n = AR · [ciθ]n ,

ˆwhich we may readily evaluate in terms of our (known) estimate θn and other available quantities.
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CYAWTP 8. Consider the region D introduced in CYATWP 1. We invoke the procedure
describe in CYATWP 2 to obtain n = 20 Bernoulli random variates,

0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1.

Evaluate the 95% confidence interval for θ, [ciθ]n, and the 95% confidence interval for, AD, [ciAD ]n.
Does the latter confidence interval include the true area, AD ≈ 0.5708?

4 Volume Estimation: Higher Dimensions

We briefly comment on the calculation of volumes in higher dimensions. The three-step Monte
Carlo area estimation procedure described in Section 3 readily extends to higher dimensions with
only minor modification.

1. We introduce a d-dimensional background rectangular region R ≡ [a1, b1]
(d)

×· · ·× [ad, bd] of vol-

umeAR which enclosesD. We next introduce a d-dimensional random vector (X(1), . . . , X(d))
for X(j) a univariate continuous uniform random variable over the interval (aj , bj), j =
1, . . . , d. We then define, as in the two-dimensional case, a Bernoulli random variable B
which takes on the value of 0 for (X(1), . . . , X(d)) ∈/ D and 1 for (X(1), . . . , X(d)) ∈ D.

2. We invoke the d-dimensional generalization of (1) to generate random variates,

(X(1), . . . , X(d))→ (x(1), . . . , x(d)) .

We then generate random variates for B based on a d-dimensional generalization of the rule
(2): b = 0 if (x(1), . . . , x(d)) ∈/ D, and b = 1 if (x(1), . . . , x(d)) ∈ D.

3. We invoke the statistical estimation procedure exactly as in the two-dimensional case: the
algorithm “sees” only the Bernoulli random variates bi, i = 1, . . . , n.

We emphasize that because the statistical estimation procedure is identical to the two-dimensional
case, the relative statistical a priori error bound is, as before,

| (d)
AD − ˆ(d)

(AD )n|
A

(d)
D

≤

zγ
√√√√1−A(d)

D /A
(d)
R

A


n−1/2 .

(d) (d)
D /AR

Note that, as expected from the two-dimensional case, the constan


t in the relative error estimate

≡ (d) (d) (d) (d)
increases as the ratio of the two volumes, θ AD /AR , decreases; note furthermore that AD /AR
may decrease with spatial dimension, d. However, and most importantly, the convergence rate,
p = 1/2, is independent of the spatial dimension, d. In this sense, the Monte Carlo method, unlike
classical deterministic methods, breaks the curse of dimensionality : the convergence rate does note
degrade with increasing spatial dimension, d.

As an example, we consider estimation of the volume of a d-dimensional unit ball. We choose
R ≡ [−1, 1]d. We present in Figure 4 typical relative error convergence results for d = 2, 3, and 4;
as predicted by theory, the convergence rate is independent of the dimension d. (The constant of
the relative error convergence somewhat increases with the dimension because the relative volume

of the d-ball with respect to the d-cube, θ ≡ (d) (d)
AD /AR , decreases with d.)
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Figure 4: Relative error convergence for estimation of the volume of the d-dimensional unit sphere
for d = 2, 3, and 4.

5 Monte Carlo Integration: “Hit or Miss” Method

We now apply the Monte Carlo area estimation technique to integrate a univariate function g over
the interval (a, b),

I =

∫ b

g(x)dx ;
x=a

for simplicity we assume g(x) > 0 for all a ≤ x ≤ b.
We first recast the integral as an area estimation problem. Towards this end, we introduce the

rectangular region

R ≡ [a, b]× [0, c]

for c ≥ maxx (a,b) g(x); we also introduce the target region∈

D ≡ {(x, y) ∈ R | y ≤ g(x)}.

We now note that

I =

∫ b b g(x)

g(x)dx =
x=a

∫
x=a

∫
dxdy = AD.

y=0

We have thus transformed the function integration problem into an area estimation problem, as
depicted in Figure 5. This Monte Carlo integration method as known as the “hit or miss” approach,
because the approximation is based on the hit-or-miss estimate of the area.

We outline the rest of the estimation procedure. We introduce X (respectively Y ) a univariate
continuous uniform random variable over the interval (a, b) (respectively (0, c)). We then generate
n associated random variates

((X,Y )→ (xi, yi))i=1,...,n .
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x = a x = b

y = 0

y = c

g

D

R

Figure 5: Illustration of univariate function integration recast as a Monte Carlo area estimation
problem.

We then introduce random variates of the Bernoulli variable B, bi, according to

i
b =

{
0, y > g(xi)

i , i = 1, . . . , n . (8)
1, yi ≤ g(xi)

Note this relation (8) derives directly from our general “not-in” vs “in” Bernoulli assignment rule,
(2). Finally, we construct the integral estimate as

1ˆ ˆIn = AR · θn = c(b− a) · .
n

∑n
bi

i=1

1
CYAWTP 9. Consider the integral I = g(x)dx for g(x)0 ≡ sin2(πx). Instantiate the Bernoulli
assignment rule (8) for estimation of this particular

∫
integral by the hit or miss approach.

CYAWTP 10. Suppose the function g that we wish to integrate takes on negative values in the
interval (a, b), but is bounded from below:

g(x) ≥ −m, a ≤ x ≤ b . (9)

Reformulate the hit or miss method such that the method may now treat this more general case.
Note you may assume that you know a value of m which satisfies the necessary inequality, (9).

We proceed with an a priori error analysis. As before, we obtain a relative (γ-confidence)
statistical a priori error bound,

|I − În|
I

≤

(
zγ

√
1− I/R /

I

)
n−1 2.

/R

We make a few observations, and in particular compare the result with the deterministic integration
techniques introduced in a previous nutshell.

1. The constant of relative error convergence depends only on the ratio of the integral to the
area of the backgound (bounding) box, I/R (≡ θ). Clearly we should choose c as small as
possible.
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2. The error bound does not depend on the regularity of the function: the function need not be
smooth for the relationship to hold.

3. The error bound does not depend on the magnitude of the derivatives of g.

4. The method provides a reasonable estimate for small n: there is no resolution requirement.

5. The convergence is however slow: p = 1/2.

(Note that we might debate the resolution issue: in cases in which we must choose R (to contain g)
such that θ is perforce small, we will not observe convergence until we throw sufficient darts to find
g(x). In such situations, if possible, we might break up the interval into different segments with
adapted background rectangles over each segment; this is an example of “importance sampling.”)

We finally proceed with an a posteriori error analysis. As before, the computable estimate of
the confidence interval for θ is

γ

ˆ[ciθ]n(θn, γ) =


ˆ z2θn + 2n − zγ

√
θ̂n(1−θ̂n)

n +
z2γ

4n2

1 +
z2γ
n

,
θ̂n +

z2γ
2n + zγ

√
θ̂n(1−θ̂n)

n +
z2γ

4n2

1 +
z2γ

.

n


It follows that the confidence interval for I = c(b− a) · θ is

[ciI ]n = c(b− a) · [ciθ]n.

As always, these statements must be intepreted as “with confidence level γ.”

6 Monte Carlo Integration: Sample-Mean Method

We introduce briefly another method to estimate the integral of a function: the sample-mean
method. For simplicity, we develop the method for the integration of univariate functions. We
recall that, given a function g and a random variable X defined over (a, b) with a probability
density function fX , the expectation of the random variable Y = g(X) is

E(Y ) = E(g(X)) =

∫ b

g(x)fX(x)dx;
a

the rule is sometimes known as law of the unconscious statistician. Recall that the rule allows us to
compute E(Y ) without explicit construction of, or reference to, fY . We now introduce a continuous
uniform random variable X over (a, b); we also introduce a random variable Y = g(X) for g the
function we wish to integrate. We then note that the integral of g over (a, b) can be expressed as

I =

∫ b b 1
g(x)dx = (b a) g(x)

a
−

∫
a

dx = (b
b− a

− a)

= (b a)E(g(X)) = (b a)E(Y ).

∫ b

g(x)funif
X (x)dx

a

− −

In other words, the integral is (b − a) times the mean of E(Y ). We have recast the integration
problem as a mean-estimation problem.
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We may readily apply standard statistical techniques to estimate the mean. Specifically, we
first generate n random variates of X,

(X → xi)i=1,...,n .

We next generate n random variates of Y ,

(Y → yi ≡ g(xi))i=1 ...,n .

Note that we do not draw directly from fY : we draw x from fX — uniform — and then evaluate
y = g(x). Finally, we estimate the integral as

1
În = (b− a)ȳn = (b− a)

(
n

n∑
i=1

yi

)
= (b− a)

(
1

1

∑n
g(xi)

n
i=1

)
,

which is our sample mean estimate of the integral. Note that ȳn ≡ n
i=1 yi is a realization of then

¯sample mean of Y , Yn, which in turn is our estimator for E(Y ).
We briefly discuss the characteristics of the estimate. We first note

∑
that E((b− ¯a)Yn) = I and

E( ((b − ¯a)Yn − I)2 ) = (b − a)2σ2
Y /n; it follows that (b − a)ȳn converges to I as n → ∞, and in

particular the error converges as 1/
√
n as in the Monte Carlo area estimate. Second, we note that

σ2
Y = 1

b−a
∫ b
a (g(x) − ḡ)2dx, where ḡ ≡ 1 b

g(x)dx; the error depends not on the smoothness ofb−a
∫
a

the function g, but rather on the “distribution” of the function.

CYAWTP 11. Consider the integral I ≡ 1/2
3xdx. We wish to estimate the integral using thex=0

sample mean method for n = 5. Our (pseudo-)random

∫
variates associated with X, a univariate

continuous uniform random variable over the interval (0, 1/2), are

0.3780 0.2353 0.1438 0.4396 0.0735.

ˆEvaluate the sample-mean estimate of the integral, In.

We remark that the sample-mean method for integration readily extends to higher spatial
dimensions: we generate uniform random variates xi, 1 ≤ i ≤ n, over the d-dimensional domain of
interest, D; we next apply our transformation g(xi) to form the random variates yi, 1 ≤ i ≤ n; we
then evaluate the sample mean, ȳn, and scale by the volume of D to obtain our estimate for the
integral.

CYAWTP 12. Consider the case in which we wish to perform an integral over a domain D
which is, say, a disk in two spatial dimensions. How might we generate uniform random variates
xi, 1 ≤ i ≤ n, over the disk (as the first step in sample-mean estimation of an integral over D).

7 Perspectives

We have provided here only a first look at the topic of Monte Carlo integration. A more in-
depth study may be found in Math, Numerics, and Programming (for Mechanical Engineers), M
Yano, JD Penn, G Konidaris, and AT Patera, available on MIT OpenCourseWare, which adopts
similar notation to these nutshells and hence can serve as a companion reference. For a much more
comprehensive view from both the computational and theoretical perspectives, we recommend
Simulation and the Monte Carlo Method, RY Rubinstein, John Wiley & Sons, 2000. We note
that the latter provides a more general perspective on pseudo-random variates and Monte Carlo
methods; the application of the Monte Carlo method to deterministic problems (recast as random
experiments) — as considered in this nutshell — is just one facet of a much broader framework.
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Appendix A Monte Carlo Integration from the Perspective
of Lebesgue Integration

We provide here an interpretation of the sample mean imethod in terms of Lebesgue integration.
We consider, as before, the integral

b

I =

∫
g(x) dx .

x=a

More generally, we might consider a domain of integration D in d dimensions; in our simple case
here, D ≡ (a, b) and d = 1. We first recall that the deterministic integration techniques introduced
in a previous nutshell build on the idea of Riemann integration. In the Riemann integral, we
partition the domain of integration into small segments δx and sum the contributions g(x)δx; we
then consider the limit δx→ 0. A typical numerical approximation suspends the limit: we consider
a Riemann sum for finite δx. The accuracy of such a scheme, for example the rectangle rule, will
depend on δx, the dimension of the domain, d, the complexity of the domain D, and the regularity
of the integrand g. In contrast, Monte Carlo integration builds on the idea of Lebesgue integration,
as we now describe.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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a b

y
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x
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(a) definition of differential area dA(y; dy)
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0
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ymin ymax

y

ρ
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Figure 6: Illustration of Lebesgue integration.

To introduce the Lebesgue integral, we partition the range of the function into small segments
dy and “sum” y dA(y; δy). Here the differential area dA(y; δy) is defined by

dA(y; dy) ≡ {x ∈ (a, b) | y ≤ g(x) ≤ y + dy} ;

roughly, dA(y; dy) is the area (in our case, length) of the subdomain for which the function g(x)
takes on values in (y, y+dy), as depicted in Figure 6(a). We may then reformulate I, an integration
with respect to the domain of the function, as an equivalent integral, ILeb, with respect to the range
of the function:

I ≡
∫ b ymax

g(x) dx = ILeb

x=a
≡
∫

y dA(y; dy) . (10)
y=ymin
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We may further break the interval [ymin, ymax] into (say) N−1 equisized segments Sj , 1 ≤ j ≤ N−1,
in terms of which we can write (10) as

N−1

ILeb =
∑∫

y dA(y; dy) (11)
Sj=1 j

N−1

=
∑
j=1

〈y〉j Aj , (12)

where

1〈y〉j ≡ )
A

∫
y dA(y; dy), Aj ;

j Sj

≡
∫

dA(y dy , (13)
Sj

for 1 ≤ j ≤ N−1. The expression (12) shall be the point of departure for our numerical formulation.
We digress briefly. We may view (10) as a Riemann-Stieljes integral. We may also define, when

appropriate, an area density

dA
ρ(y) ≡ ,

dy

such that dA(y) = ρ(y)dy, as depicted in Figure 6(b). (For our one-dimensional example, the
density near the smooth (local) maxima and minima of g(x) develops an inverse square-root sin-
gularity.) We can thus write ∫ ymax

∫ ymax

ILeb = y dA(y) = yρ(y)dy , (14)
y=ymin y=ymin

which we can understand as a kind of mean with respect to a density ρ. The expression (14) is
convenient for “Riemannian” visualization of the Lebesgue integral.

We now develop a numerical approximation to ILeb of (12). We first generate n i.i.d. random
variates of random variable X uniformly distributed over (a, b): (X → xi)i=1 ...,n. We next generate,
from our sample (x1, x2, . . . , xn), n i.i.d. random variates of random variable Y = g(X) : (Y →
yi ≡ ˆg(xi))i=1,...,n. We then form our approximation ILeb

n to ILeb of (12) as

N−1

ÎLeb
n ≡

∑
j=1

 1
(

#(Sj)

#(Sj)∑
k=1

yk;j ) (
#(Sj)

(b− a) )
n


. (15)

Here #(Sj), 1 ≤ j ≤ N − 1, is the number of random variates y


i, 1 ≤ i ≤ n, in interval Sj , and

yk;j , 1 ≤ k ≤ #(Sj), 1 ≤ j ≤ N − 1, is a relabeling of the yi, 1 ≤ i ≤ n, such that the yk;j reside in
Sj . We can easily motivate (15): the term

1
#(Sj)

#(Sj)

∑
yk;j (16)

k=1

is a plausible approximation to 〈y〉j of (12) (as defined in (13)); the term

#(Sj)
(b

n
− a) (17)

13



is a plausible (in expectation, or limit n→∞) approximation to Aj of (12) (as defined in (13)).
We now note that

ÎLeb (b
n =

− a)

n

N−1∑
j=1

#(Sj)∑
k=1

yk;j =
(b− a)

(18)
n

∑n
ˆyi = Isample mean
n .

i=1

(We note that the segments Sj , 1 ≤ j ≤ N − 1, are purely an artifact of interpretation. We could
also choose for segments the Voronoi diagram induced by the sample yi, 1 ≤ i ≤ n.) We may thus
interpret Monte Carlo sample mean integration as Lebesgue integration with (effectively) Bernoulli
estimation of the differential area dA. We note that the sampling procedure preferentially selects
y — and hence reduces the Aj estimation error — associated with the larger areas Aj ; these larger
areas, in turn, will often support the more substantial contributions to ILeb. But not always: a
function which is vanishingly small over a large region of D and very large over a small region of
D will not be efficiently integrated by the (sample mean) Monte Carlo method.

We can also view deterministic methods from this Lebesgue perspective. The important dif-
ference between deterministic methods and Monte Carlo methods arises in the approximation of
Aj of (13): for deterministic methods, the error in the approximation of Aj will typically converge
as O(n−d), hence very slowly for larger dimensions d; in contrast, for Monte Carlo methods, the
error in the approximation to Aj (by (17)) will converge as O(n−1/2) — also slowly, but now inde-
pendent of the spatial dimension, d. Note that n here refers to the number of function evaluations
x → g(x). We conclude that if we wish to break the curse of dimensionality it does not suffice
to replace the d-dimensional “Riemann” domain with the one-dimensional “Lebesgue” range; we
must also accurately approximate the integrand of the Lebesgue integral.
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