Recitation 6: Wednesday, 14 March / Friday, 16 March

MATLAB Exercises_Recitation 6 due: Monday, 19 March 2012 at 5 PM by upload to Stellar

Format for upload: Students should upload to the course Stellar website a folder

YOURNAME_MatlabExercises_Rec6

which contains the completed scripts and functions for the assigned MATLAB Exercises_Recitation 6: all the scripts should be in a single file, with each script preceded by a comment line which indicates the exercise number; each function .m file should contain a comment line which indicates the exercise number.

- 1. Write a script which
 - (i) creates the 2×2 matrices

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & \frac{1}{2} \\ 2 & 3 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix};$$

(ii) creates the 2×2 matrices

$$\begin{array}{rcl} & \texttt{prod_matr} & = & A\,B\,C \;, \\ \\ & \texttt{prod_matr_rev} & = & B\,A\,C \;, \\ \\ & \texttt{diff_prod_matr} & = & \texttt{prod_matr_prod_matr_rev} \;; \end{array}$$

(iii) creates the 2×2 matrices

$$\begin{array}{rcl} {\tt transp_prod} &=& (A\,B\,C)^{\rm T}\;, \\ \\ {\tt prod_transp_rev} &=& C^{\rm T}\,B^{\rm T}\,A^{\rm T}\;, \\ \\ {\tt diff_transp_rule} &=& {\tt transp_prod-prod_transp_rev}\;. \end{array}$$

Note that you should need only a single line of Matlab to create each of the 2×2 matrices above.

2. We define, for a given integer m, h = 1/(m-1); $x_i = (i-1)h$, $1 \le i \le m$; the $m \times 2$ matrix X,

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{pmatrix}, \tag{1}$$

and the $m \times 1$ vector Y,

$$Y = 0.1 \begin{pmatrix} \sin \pi x_1 \\ \sin \pi x_2 \\ \vdots \\ \sin \pi x_m \end{pmatrix}. \tag{2}$$

Note $X_{i1} = 1, 1 \le i \le m, X_{i2} = x_i, 1 \le i \le m, \text{ and } Y_i = 0.1 \sin(\pi x_i), 1 \le i \le m.$

(i) Create a function

function [res_sq] = eval_res_sq(m,v)

which for inputs m (a scalar) and v = v = [v1; v2] (a column 2-vector) returns the scalar res_sq given by

$$[\mathtt{res_sq}] = Y^{\mathrm{T}}Y - 2v^{\mathrm{T}}X^{\mathrm{T}}Y + v^{\mathrm{T}}X^{\mathrm{T}}Xv$$

for X and Y defined (within your function) by equations (1) and (2), respectively. Note you should only need a single MATLAB line to define each of $[x_i, 1 \le i \le m]$, X, and Y.

(ii) Write a script which evaluates your function $eval_res_sq$ for inputs m = 20 and v = [1;1].

2.086 Numerical Computation for Mechanical Engineers Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.