Recitation 9

Buckling of Sections

Consider the box column shown:

Find the critical buckling load.

Column can buckle
globally (Euler) or locally (plate)
$\underline{\text { Global (Euler) Buckling }}$
$P_{\mathrm{c}}=\frac{\pi^{2} E I}{L^{2}}$

$$
\begin{array}{rlrl}
b_{2} & I_{x} & =2\left(\frac{b_{1} h^{3}}{12}+b_{1} h\left(\frac{b_{2}}{2}\right)^{2}\right)+2 \frac{h b_{2}^{3}}{12} \\
\hdashline b_{1} & & =\frac{b_{1} h^{3}}{6}+\frac{b_{1} b_{2}^{2} h}{2}+\frac{b_{2}^{3} h}{6} \\
\hdashline-x & I_{y} & =2\left(\frac{b_{2} h^{3}}{12}+b_{2} h\left(\frac{b_{1}}{2}\right)^{2}\right)+2 \frac{h b_{1}^{3}}{12} \\
& =\frac{b_{2} h^{3}}{6}+\frac{b_{1}^{2} b_{2} h}{2}+\frac{b_{1}^{3} h}{6}
\end{array}
$$

$I_{x}<I_{y} \rightarrow$ Will buckle about x-axis

So $P_{\mathrm{c}}=\frac{\pi^{2} E}{L^{2}}\left(\frac{b_{1} h^{3}}{6}+\frac{b_{1} b_{2}^{2} h}{2}+\frac{b_{2}^{3} h}{6}\right)$
Local (Plate) Buckling

Treat each side as an individual plate.

* Assume uniform compression \rightarrow stress in each plate is the same.

For a plate simply supported on the loaded edges:
$P_{\mathrm{c}}=\frac{k_{\mathrm{c}} \pi^{2} D}{b}$ (where k_{c} depends on BC on other sides and dimensions)
$\left(D=\frac{E h^{3}}{12\left(1-\nu^{2}\right)}\right)$
So

$$
\begin{aligned}
\sigma_{\mathrm{cr}, 1}= & \frac{P_{\mathrm{c} 1}}{h b_{1}}=\frac{k_{\mathrm{c} 1} \pi^{2} D}{h b_{1}^{2}} \\
& \text { and } \\
\sigma_{\mathrm{cr}, 2}= & \frac{P_{\mathrm{c} 2}}{h b_{2}}=\frac{k_{\mathrm{c} 2} \pi^{2} D}{h b_{2}^{2}}
\end{aligned}
$$

All plates buckle at the same time, so

$$
\begin{gathered}
\sigma_{\mathrm{cr}, 1}=\sigma_{\mathrm{cr}, 2} \\
\frac{k_{\mathrm{c} 1} \pi^{2} D}{h b_{1}^{2}}=\frac{k_{\mathrm{c} 2} \pi^{2} D}{h b_{2}^{2}} \rightarrow k_{\mathrm{c} 2}=k_{\mathrm{c} 1}\left(\frac{b_{2}}{b_{1}}\right)^{2}
\end{gathered}
$$

Total load $=2 P_{1}+2 P_{2}$

$$
\begin{aligned}
\rightarrow P_{\mathrm{c}, \mathrm{tot}} & =2 P_{\mathrm{c} 1}+2 P_{\mathrm{c} 2}=2\left(\frac{k_{\mathrm{c} 1} \pi^{2} D}{b_{1}}+\frac{k_{\mathrm{c} 2} \pi^{2} D}{b_{2}}\right) \\
& =2 \pi^{2} D k_{\mathrm{c} 1}\left[\frac{1}{b_{1}}+\left(\frac{b_{2}}{b_{1}}\right)^{2} \cdot \frac{1}{b_{2}}\right] \\
& =\frac{2 \pi^{2} D k_{\mathrm{c} 1}}{b_{1}}\left(1+\frac{b_{2}}{b_{1}}\right)
\end{aligned}
$$

But what is $k_{\mathrm{c} 1} ? ?$

- In general, the adjacent plates on the unloaded edges will cause a bending moment (somewhere between simply supported and fully clamped)
(Plot on page 16 gives $k_{\mathrm{c} 1}$ as function of $\frac{b_{2}}{b_{1}}$)
(assumes $L / b_{1}>5$)

Example

$h=2 \mathrm{~mm}$
$b_{1}=100 \mathrm{~mm}$
$b_{2}=50 \mathrm{~mm}$

Find the length, L, that marks transition between global and local buckling.

$$
\begin{aligned}
P_{\mathrm{c}, \text { global }} & =\frac{\pi^{2} E}{L^{2}}\left(\frac{b_{1} h^{3}}{6}+\frac{b_{1} b_{2}^{2} h}{2}+\frac{b_{2}^{3} h}{6}\right) \\
& =\frac{\pi^{2} E}{L^{2}}\left(\frac{100(2)^{3}}{6}+\frac{100(50)^{2}(2)}{2}+\frac{50^{3}(2)}{6}\right)=\frac{\pi^{2} E}{L^{2}}\left(291,800 \mathrm{~mm}^{4}\right) \\
P_{\mathrm{c}, \text { local }} & =\frac{2 \pi^{2} D k_{\mathrm{c} 1}}{b_{1}}\left(1+\frac{b_{2}}{b_{1}}\right) \quad\left(\text { From plot: } k_{\mathrm{c} 1} \simeq 5.2\right) \\
& =\frac{2 \pi^{2} E h^{3} k_{\mathrm{c} 1}}{b_{1}(12)\left(1-\nu^{2}\right)}\left(1+\frac{b_{2}}{b_{1}}\right) \\
& =\frac{2 \pi^{2} E(2)^{3}(5.2)}{100(12)\left(1-0.3^{2}\right)}(1+0.5)=\pi^{2} E\left(0.114 \mathrm{~mm}^{2}\right)
\end{aligned}
$$

Let $P_{\mathrm{c}, \text { global }}=P_{\mathrm{c}, \text { local }}$ and solve for L :

$$
\begin{gathered}
\frac{\pi^{2} E}{L^{2}}(291,800)=\pi^{2} E(0.114) \\
L \simeq 1600 \mathrm{~mm}=1.6 \mathrm{~m}
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.080J / 1.573J Structural Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

