Recitation 4

4.1 Find the max. P that this beam can support without yielding.

Cross-section
h
h

$$
\begin{align*}
& R_{x}=P \cos \theta \\
& R_{z}=P \sin \theta \tag{4.1}\\
& M_{R}=P \sin \theta L
\end{align*}
$$

$$
\begin{equation*}
M(x)=-P \sin \theta L\left(1-\frac{x}{l}\right) \tag{4.2}
\end{equation*}
$$

In general, $\sigma_{x x}=\underbrace{\frac{N}{A}}_{\text {axial force }}+\underbrace{\frac{M z}{I}}_{\text {bending }}$ (eqn. 4.47).
In this case:

$$
\begin{align*}
& N=P \cos \theta \\
& A=h^{2} \\
& I=\frac{h^{4}}{12} \tag{4.3}\\
& M(x)=-P \sin \theta L\left(1-\frac{x}{L}\right)
\end{align*}
$$

Axial component is constant along length and height, $=\frac{P \cos \theta}{h^{2}}$ (tension).
Bending component is maximum tension at $x=0, z=-\frac{h}{2}$:

$$
\begin{align*}
& \sigma_{b}=-\frac{P \sin \theta L\left(-\frac{h}{2}\right)}{\frac{h^{4}}{12}}=\frac{6 P \sin \theta L}{h^{3}} \tag{4.4}\\
\Rightarrow & \sigma_{x x, \max }=\frac{P \cos \theta}{h^{2}}+\frac{6 P \sin \theta L}{h^{3}} \tag{4.5}
\end{align*}
$$

First yield occurs when $\sigma_{x x, \max }=\sigma_{y}: \frac{P}{h^{2}}\left(\cos \theta+6 \sin \theta \frac{L}{h}\right)=\sigma_{y}$.

$$
\begin{equation*}
P=\frac{\sigma_{y} h^{2}}{\cos \theta+6 \sin \theta(L / h)} \tag{4.6}
\end{equation*}
$$

* What is the ratio of the 2 stress components?

$$
\begin{equation*}
\frac{\sigma_{\text {axial }}}{\sigma_{\text {bending }}}=\frac{\frac{P \cos \theta}{h^{2}}}{\frac{6 P \sin \theta L}{h^{3}}}=\left(\frac{1}{6}\right)\left(\frac{h}{L}\right)\left(\frac{\cos \theta}{\sin \theta}\right) \tag{4.7}
\end{equation*}
$$

$\underline{\text { Example: if } \theta=45^{\circ}, L=20 h \rightarrow \frac{\sigma_{\text {axial }}}{\sigma_{\text {bending }}}=\frac{1}{120} \text { in }}$

4.2 Compare the max. shear stress in this beam to the max. tensile stress.

Recall that shear stress $\sigma_{x z}$ is a parabolic function of z (eqn. 4.55)

$$
\begin{equation*}
\sigma_{x z}(z)=\frac{3 V}{2 A}\left[1-\frac{z^{2}}{(h / 2)^{2}}\right] \tag{4.8}
\end{equation*}
$$

In our case, $V=P \sin \theta$

$$
\begin{align*}
& \sigma_{x z} \text { is max at } z=0, \text { constant W.R.T. } x \rightarrow \sigma_{x z, \max }=\frac{3}{2} \frac{P \sin \theta}{h^{2}} \\
& \sigma_{x x, \max }=\frac{P}{h^{2}}\left(\cos \theta+6 \sin \theta \frac{L}{h}\right) \\
& \frac{\sigma_{x z}}{\sigma_{x x}}=\frac{\frac{3}{2} \frac{P \sin \theta}{h^{2}}}{\frac{P}{h^{2}}\left(\cos \theta+6 \sin \theta \frac{L}{h}\right)}=\frac{3 \sin \theta}{2(\cos \theta+6 \sin \theta L / h)} \tag{4.9}
\end{align*}
$$

Same example: $\frac{\sigma_{x z}}{\sigma_{x x}}=\frac{3}{2(1+120)} \simeq 0.012$

MIT OpenCourseWare
http://ocw.mit.edu

2.080J / 1.573J Structural Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

