Recitation 3

3.1 Summary of Beam Equations

Equilibrium:

$$
\left.\begin{array}{c}
\frac{\mathrm{d} N}{\mathrm{~d} x}=0 \\
\frac{\mathrm{~d} V}{\mathrm{~d} x}+g=0 \tag{3.2}\\
\frac{\mathrm{~d} M}{\mathrm{~d} x}=V
\end{array}\right\} \frac{\mathrm{d}^{2} M}{\mathrm{~d} x^{2}}+g=0
$$

Hooke's Law:

$$
\begin{equation*}
M=E I \kappa \tag{3.3}
\end{equation*}
$$

Geometry:

$$
\begin{gather*}
\theta=\frac{d w}{d x} \\
\kappa=\frac{\mathrm{d} \theta}{\mathrm{~d} x}=-\frac{\mathrm{d}^{2} w}{\mathrm{~d} x^{2}} \\
M=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}} \tag{3.4}\\
V=-E I \frac{\mathrm{~d}^{3} w}{\mathrm{~d} x^{3}} \tag{3.5}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} M}{\mathrm{~d} x^{2}}+q=0 \rightarrow E I \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}=q \tag{3.7}
\end{equation*}
$$

3.2 Methods of Solution

1. Direct Integration: $E I \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}=q$
2. Uncoupled solution: find $M(x)$, then integrate $M(x)=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}$
3. Rayleigh-Ritz:

- Assume shape function
- Apply BC's
- Calclate $\Pi=U-V$, find $w(x)$ to minimize Π

4. Castigliano's Theorem: $w=\frac{\partial U}{\partial P}$

Example

Find the max. deflection for the following cantilever beam:

Direct integration: $E I \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}=q$

$$
\begin{align*}
& \text { 1st integ: } \frac{\mathrm{d}^{3} w}{\mathrm{~d} x^{3}}=\frac{1}{E I}\left(q x+C_{1}\right) \tag{3.8}\\
& \text { 2nd integ: } \frac{\mathrm{d}^{2} w}{\mathrm{~d} x^{2}}=\frac{1}{E I}\left(q \frac{x^{2}}{2}+C_{1} x+C_{2}\right) \tag{3.9}\\
& \text { 3rd integ: } \frac{\mathrm{d} w}{\mathrm{~d} x}=\frac{1}{E I}\left(q \frac{x^{3}}{6}+C_{1} \frac{x^{2}}{2}+C_{2} x+C_{3}\right) \tag{3.10}\\
& \text { 4th integ: } w=\frac{1}{E I}\left(q \frac{x^{4}}{24}+C_{1} \frac{x^{3}}{6}+C_{2} \frac{x^{2}}{2}+C_{3} x+C_{4}\right) \tag{3.11}
\end{align*}
$$

Need 4 BC's to evaluate C_{1}, C_{2}, C_{3}, and C_{4}

$$
\begin{align*}
& \text { (1) } w(0)=0 \rightarrow C_{4}=0 \tag{3.12}\\
& \text { (2) } w^{\prime}(0)=0 \rightarrow C_{3}=0 \tag{3.13}\\
& \text { (3) } M(L)=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}(L)=0 \rightarrow q \frac{L^{2}}{2}+C_{1} L+C_{2}=0 \rightarrow C_{2}=-q \frac{L^{2}}{2}-C_{1} L \tag{3.14}\\
& \text { (4) } V(L)=-E I \frac{d^{3} w}{d x^{3}}(L)=0 \rightarrow q L+C_{1}=0 \rightarrow C_{1}=-q L \tag{3.15}\\
& \qquad C_{2}=-\frac{q L^{2}}{2}+q L^{2}=\frac{q L^{2}}{2} \tag{3.16}
\end{align*}
$$

So

$$
\begin{equation*}
w(x)=\frac{1}{E I}\left(q \frac{x^{4}}{24}-\frac{q L x^{3}}{6}+\frac{q L^{2} x^{2}}{4}\right) \tag{3.17}
\end{equation*}
$$

Max. at

$$
\begin{equation*}
x=L \rightarrow w(L)=\frac{q}{E I}\left(\frac{L^{4}}{24}-\frac{L^{4}}{6}+\frac{L^{4}}{4}\right)=\frac{3 q L^{4}}{24 E I}=\frac{q L^{4}}{8 E I} \tag{3.18}
\end{equation*}
$$

Example

Find $w(x)$ for the following beam:

Find $M(x)$, then use $M(x)=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}$:
First find reaction forces:

$$
\begin{align*}
& +\Sigma M_{A}=0:-M_{0}+B L=0 \rightarrow B=\frac{M_{0}}{L} \tag{3.19}\\
& \Sigma F_{y}=0: A+B=0 \rightarrow A=-B=\frac{M_{0}}{L} \tag{3.20}
\end{align*}
$$

- $M(x)$ will be discontinuous at $L / 2 \rightarrow$ need to evaluate both sections.

For $x<L / 2$:

SIGN CONVENTION

For $x>L / 2$:

$-M(x)=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}} \rightarrow$ Ingegrate twice to get $w(x):$
For $x<L / 2:-\frac{M_{0}}{l} x=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}$

$$
\text { 1st int: } \frac{\mathrm{d} w}{\mathrm{~d} x}=\frac{M_{0}}{E I L} \frac{x^{2}}{2}+C_{1}
$$

$$
\text { 2nd int: } w=\frac{M_{0}}{E I L} \frac{x^{3}}{6}+C_{1} x+C_{2}
$$

For $x>L / 2: M_{0}-\frac{M_{0}}{l} x=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}$
1st int: $\frac{\mathrm{d} w}{\mathrm{~d} x}=-\frac{M_{0} x}{E I}+\frac{M_{0}}{E I L} \frac{x^{2}}{2}+C_{3}$
2nd int: $w=-\frac{M_{0}}{E I} \frac{x^{2}}{2}+\frac{M_{0}}{E I L} \frac{x^{3}}{6}+C_{3} x+C_{4}$

- We need $4 B C$'s to evaluate C_{1}, C_{2}, C_{3}, and C_{4}.
(1) $w(0)=0 \rightarrow C_{2}=0$
(2) $w(L)=0 \rightarrow-\frac{M_{0}}{E I} \frac{L^{2}}{2}+\frac{M_{0}}{E I L} \frac{L^{3}}{6}+C_{3} L+C_{4}=0 \rightarrow C_{4}=\frac{M_{0} L^{2}}{3 E I}-C_{3} L$
(3) $\frac{\mathrm{d} w}{\mathrm{~d} x}$ at $\frac{L}{2}$ must be continuous

$$
\frac{M_{0}}{E I L} \frac{(L / 2)^{2}}{2}+C_{1}=-\frac{M_{0}(L / 2)}{E I}+\frac{M_{0}}{E I L} \frac{(L / 2)^{2}}{2}+C_{3} \rightarrow C_{1}=C_{3}-\frac{M_{0} L}{2 E I}
$$

(4) w at $L / 2$ must be continuous

$$
\frac{M_{0}}{E I L} \frac{(L / 2)^{3}}{6}+C_{1}\left(\frac{L}{2}\right)=-\frac{M_{0}}{E I} \frac{(L / 2)^{2}}{2}+\frac{M_{0}}{E I L} \frac{(L / 2)^{3}}{6}+C_{3}\left(\frac{L}{2}\right)+\underbrace{\frac{M_{0} L^{2}}{3 E I}-C_{3} L}_{C_{4}}
$$

- Substitute for C_{1}, solve for C_{3} :

$$
\begin{gather*}
\left(C_{3}-\frac{M_{0} L}{2 E I}\right) \frac{L}{2}=-C_{3}\left(\frac{L}{2}\right)+\frac{5}{24} \frac{M_{0} L^{2}}{E I} \\
C_{3}=\frac{11}{24} \frac{M_{0} L}{E I} \\
C_{1}=\frac{11}{24} \frac{M_{0} L}{E I}-\frac{M_{0} L}{2 E I}=-\frac{M_{0} L}{24 E I} \\
C_{4}=\frac{M_{0} L^{2}}{3 E I}-\frac{11}{24} \frac{M_{o} L^{2}}{E I}=-\frac{M_{0} L^{2}}{8 E I} \\
 \tag{3.22}\\
w(x)=\left\{\begin{array}{l}
\frac{M_{0}}{6 E I L} x^{3}-\frac{M_{0} L}{24 E I} x \quad(x \leqslant L / 2) \\
\frac{M_{0}}{6 E I L} x^{3}-\frac{M_{0}}{2 E I} x^{2}+\frac{11}{24} \frac{M_{0} L}{E I} x-\frac{M_{0} L^{2}}{8 E I} \quad(x \geqslant L / 2)
\end{array}\right.
\end{gather*}
$$

Example

Find $w(x)$ for the following beam:

- Statically indeterminant \rightarrow must use direct integration

$$
\begin{array}{ll|l}
& x<L / 2 & x>L / 2 \\
& \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}=0 & \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}=0 \\
\text { 1st int: } & \frac{\mathrm{d}^{3} w}{\mathrm{~d} x^{3}}=C_{1} & \frac{\mathrm{~d}^{3} w}{\mathrm{~d} x^{3}=C_{5}} \\
\text { 2nd int: } & \frac{\mathrm{d}^{2} w}{\mathrm{~d} x^{2}}=C_{1} x+C_{2} & \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}=C_{5} x+C_{6} \\
\text { 3rd int: } & \frac{\mathrm{d} w}{\mathrm{~d} x}=\frac{C_{1}}{2} x^{2}+C_{2} x+C_{3} & \frac{\mathrm{~d} w}{\mathrm{~d} x}=\frac{C_{5}}{2} x^{2}+C_{6} x+C_{7} \\
\text { 4th int: } & w=\frac{C_{1}}{6} x^{3}+\frac{C_{2}}{2} x^{2}+C_{3} x+C_{4} & w=\frac{C_{5}}{6} x^{3}+\frac{C_{6}}{2} x^{2}+C_{7} x+C_{8}
\end{array}
$$

- We need 8 BS's to evaluate $C_{1}-C_{8}$:
(1) $w(0)=0 \rightarrow C_{4}=0$
(2) $w^{\prime}(0)=0 \rightarrow C_{3}=0$
(3) $M(L)=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}(L)=0 \rightarrow C_{5} L+C_{6}=0$ (a)
(4) $w(L)=0 \rightarrow \frac{C_{5}}{6} L^{3}+\frac{C_{6}}{2} L^{2}+C_{7} L+C_{8}=0$ (b)
(5) $w(L / 2)$ is continuous: $\frac{C_{1}}{6}\left(\frac{L}{2}\right)^{3}+\frac{C_{2}}{2}\left(\frac{L}{2}\right)^{2}=\frac{C_{5}}{6}\left(\frac{L}{2}\right)^{3}+\frac{C_{6}}{2}\left(\frac{L}{2}\right)^{2}+C_{7}\left(\frac{L}{2}\right)+C_{8}$ (c)
(6) $w^{\prime}(L / 2)$ is continuous: $\frac{C_{1}}{2}\left(\frac{L}{2}\right)^{2}+C_{2}\left(\frac{L}{2}\right)=\frac{C_{5}}{2}\left(\frac{L}{2}\right)^{2}+C_{6}\left(\frac{L}{2}\right)+C_{7}$ (d)
(7) $M(L / 2)$ is continuous: $C_{1}\left(\frac{L}{2}\right)+C_{2}=C_{5}\left(\frac{L}{2}\right)+C_{6}$ (C)
(8) $V\left(\frac{L}{2}^{-}\right)=V\left({\frac{L^{+}}{2}}^{+}\right)+P \rightarrow-E I C_{1}-E I C_{5}+P(\ddagger)$
(Step jump due to point load)
- Now we have 6 eons (@)-(t) to solve for $C_{1}, C_{2}, C_{5}-C_{8}$
(Omit algebra)

$$
C_{1}=-\frac{11}{16} \frac{P}{E I}, C_{2}=\frac{3}{16} \frac{P L}{E I}, C_{5}=\frac{5}{16} \frac{P}{E I}, C_{6}=-\frac{5}{16} \frac{P L}{E I}, C_{7}=\frac{P L^{2}}{8 E I}, C_{8}=-\frac{P L^{3}}{48 E I}
$$

So

$$
w(x)=\left\{\begin{array}{l}
\frac{P}{E I}\left(-\frac{11}{96} x^{3}+\frac{3}{32} x^{2} L\right) \quad(x \leqslant L / 2) \tag{3.23}\\
\frac{P}{E I}\left(\frac{5}{96} x^{3}-\frac{5}{32} x^{2} L+\frac{1}{8} x L^{2}-\frac{1}{48} L^{3}\right) \quad(x \leqslant L / 2)
\end{array}\right.
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.080J / 1.573J Structural Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

