18.786 Problem Set 11 (due Thursday May 6 in class)

1. Prove the local Kronecker-Weber theorem using Local class field theory, as follows. The local reciprocity map gives an isomorphism $G_{K}^{a b} \cong U_{K} \times \hat{\mathbb{Z}}$, using a splitting of the exact sequence

$$
0 \rightarrow U_{K} \rightarrow K^{\times} \rightarrow \mathbb{Z} \rightarrow 0
$$

i.e. a choice of uniformizer π.
(a) Prove that $\mathbb{Q}_{p}^{u n}=\mathbb{Q}_{p}\left(\zeta_{m}\right)_{(m, p)=1}$.
(b) The "ramified" part of $K^{a b} / K$, denoted K_{π}, is defined to be the fixed field of $F r o b_{K} \in G_{K}^{a b}$, and by the above structure theorem for $G_{K}^{a b}$, the Galois group of K_{π} / K is isomorphic to U_{K}. To prove the local Kronecker-Weber theorem we need to show that when $K=\mathbb{Q}_{p}, K_{\pi}=\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)_{n \in \mathbb{Z}}$. Show it suffices to prove that the image of the norm map $N_{\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right) / \mathbb{Q}_{p}} \mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)$ is $U_{K}^{(n)} \times \mathbb{Z} \subset U_{K} \times \mathbb{Z}=\mathbb{Q}_{p}^{\times}$.
(c) Now prove $N_{\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right) / \mathbb{Q}_{p}} \mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)=U_{K}^{(n)} \times \mathbb{Z}$. First show that the norm of $1-\zeta_{p^{n}}$ is p, and then use the index of the norm subgroup to conclude.
2. Check the assertion made in Milne V.4.1 (pg 166): i.e. check that $\mathbb{I}_{S_{\infty}}$ is a closed subspace of \mathbb{I}_{K} and that the quotient is a direct sum of countably many copies of \mathbb{Z} with the discrete topology.
3. Let K be a number field and let M_{K} be its set of valuations, normalized to be extend the valuation from \mathbb{Q}_{p} or \mathbb{R} or \mathbb{C}. (For example, we still have $|p|_{v}=1 / p$ if v lies above a prime p of \mathbb{Q}). Define the local degree of a valuation v to be $n_{v}=\left[K_{v}: \mathbb{Q}_{p}\right]$, where p is the restriction of v to \mathbb{Q}. For $x \in K_{v}$, let $\left\|x_{v}\right\|=|x|_{v}^{n_{v}}$. Show that for $x \in K$,

$$
\prod_{v \in M_{K}}\left\|x_{v}\right\|=1
$$

This is the product formula for number fields. (Hint: use problem 3 on problem set 7).
4. Let K be a nonarchimedean local field and $n \geq 2$ an integer. Assume K contains the n 'th roots of unity. Prove the following properties of the Hilbert symbol $()=,(,)_{n}$.
(a) If $a \in K^{\times}$and $x \in K$ are such that $x^{n}-a \neq 0$, then $\left(a, x^{n}-a\right)=1$. Deduce that $(a,-a)=$ $1,(a, 1-a)=1$ and $(a, a)=(a,-1)$.
(b) Let $a, b \in K^{\times}$with $a+b \neq 0$. Show that

$$
(a, b)=(a, a+b)(a+b, b)(-1, a+b)
$$

(c) Let n be odd and $a, b, c \in K^{\times}$with $a+b+c=0$. Show that $(a, b)(b, c)(c, a)=1$.

5 . Let k be a field.
(a) Let A be the set of $a \in k^{\times}$which are represented over k by the binary form $x^{2}+b y^{2}$ (i.e. there exist $x, y \in k$ such that $\left.a=x^{2}+b y^{2}\right)$. Show that A is a subgroup of k^{\times}.
(b) Let $a, b \in k^{\times}$. Show that the form $x_{1}^{2}+a x_{2}^{2}+b x_{3}^{2}$ represents 0 nontrivially over k if and only iff the form $x_{1}^{2}+a x_{2}^{2}+b x_{3}^{2}+a b x_{4}^{2}$ does.
6. Use gp/Pari to do Exercise 3.14 in Milne. Provide output of your code and some explanation.
7. For each $p \in\{2,3,5,7,31\}$, let M be a splitting field of $X^{3}-2$ over \mathbb{Q}_{p}. Describe $\operatorname{Nm}_{M / \mathbb{Q}_{p}} M^{\times}$as a subgroup of \mathbb{Q}_{p}^{\times}.
8. Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial with integer coefficients, such that the degree of f is prime. Show that the reduction of $f(\bmod p)$ is irreducible for a positive density of primes p. (Hint: consider the splitting field of f and use the Chebotarev density theorem).
9. Prove the Artin-Whaples weak approximation theorem: Let $\left|\left.\right|_{1}, \ldots,| |_{n}\right.$ be nontrivial inequivalent valuations of a field K, and let $a_{i} \in K_{v_{i}}$, the completion of K with respect to $\left.\right|_{i}$, for each $i=1 \ldots n$. For any $\epsilon>0$, there is an element $a \in K$ such that $\left|a-a_{i}\right|_{i}<\epsilon$ for all i.
10. For a ring R, let $S L_{n}(R)$ be the group of $n \times n$ matrices with detrminant 1 . Show that for any integer N, the reduction map $S L_{n}(\mathbb{Z}) \rightarrow S L_{n}(\mathbb{Z} / N \mathbb{Z})$ is surjective.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

