18.786 Problem Set 10 (due Thursday Apr 29 in class)

1. Let K be a nonarchimedean local field.
(a) Let L be finite and unramified over K. Show that L is Galois over K, and in fact cyclic.
(b) Show that $K^{u n}$ is obtained by adjoining to K all the prime to p roots of unity.
2. Check the details of the comment in Milne pg. 105, that Cor commutes with the isomorphism $H_{T}^{2}(\operatorname{Gal}(L / K), \mathbb{Z}) \rightarrow H_{T}^{2}\left(\operatorname{Gal}(L / K), L^{\times}\right)$, given by cup product with the fundamental class.
3. (Kummer theory) Let K be a nonarchimedean local field, $K^{\text {al }}$ its algebraic closure, and $G_{K}=$ $\operatorname{Gal}\left(K^{a l} / K\right)$. For any integer n, let μ_{n} be the group of n 'th roots of unity in $K^{a l}$. Assume that $\mu_{n} \subset K$. Then μ_{n} is a (trivial) G_{K}-module. Show that there is an isomorphism of groups $K^{\times} /\left(K^{\times}\right)^{n} \rightarrow$ $\operatorname{Hom}\left(G_{K}, \mu_{n}\right)$.
(Hint: use the short exact sequence

$$
0 \rightarrow \mu_{n} \rightarrow K^{a l} \xrightarrow{(\cdot)^{n}} K^{a l} \rightarrow 0
$$

and compute the boundary map in cohomology).
4. Show that for $K=\mathbb{Q}_{p}, L=K\left(\zeta_{p^{n}}\right)$, the image of the norm $N_{L / K} L^{\times}$is $U_{K}^{(n)} \times p^{\mathbb{Z}}$ inside $K^{\times}=U_{K} \times p^{\mathbb{Z}}$ (Hint: use Local class field theory to figure out the index of the norm subgroup).
5. (Hilbert symbol) Let K be a nonarchimedean local field. For $a, b \in K^{\times}$, define $(a, b)=1$ if $z^{2}=$ $a x^{2}+b y^{2}$ has nontrivial solution in K, and $(a, b)=-1$ otherwise.
(a) Show that $(a, b)=1$ iff b is a norm from $K(\sqrt{a})$.

Note: If a is a square, define $K(\sqrt{a})$ to be $K[X] /\left(X^{2}-a\right) \cong K \times K$, with the norm taking $\left(x_{1}, x_{2}\right)$ to $x_{1} x_{2}$.
(b) Show that (a, b) is bilinear in each variable: $\left(a a^{\prime}, b\right)=(a, b)\left(a^{\prime}, b\right)$. (Hint: what is the index of the norm subgroup?).
(c) Show that $(a, 1-a)=(a,-a)=1$.
(d) Let $p>2$ be prime. Show that if $a, b \in \mathbb{F}_{p}^{\times}$, there are $x, y \in \mathbb{F}_{p}$ such that $1=a x^{2}+b y^{2}$.
(e) Compute a table of the Hilbert pairing

$$
(,): \frac{K^{\times}}{\left(K^{\times}\right)^{2}} \times \frac{K^{\times}}{\left(K^{\times}\right)^{2}} \rightarrow\{1,-1\}
$$

for $K=\mathbb{Q}_{p}, p \neq 2$.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

