18.786 Problem Set 9 (due Thursday Apr 22 in class)

1. Let L / K be a finite extension of finite fields. Show that the norm from L to K is surjective. (Hint: use Hilbert's theorem 90 and the Herbrand quotient.)
2. Let L / K be a finite extension of finite fields. Show that the trace map from L to K is surjective.
3. Check that $M_{G} \cong M \otimes_{\mathbb{Z}[G]} \mathbb{Z}$ where \mathbb{Z} is considered as a trivial $\mathbb{Z}[G]$ module. (Hint: normal basis theorem).
4. Prove Proposition 3.2 in the book.

Note: for homology, the corestriction map is natural and defined as the map induced by defining Cor : $H_{0}(H, M) \rightarrow H_{0}(G, M)$ in dimension 0 as $M_{H}=M / I_{H} M \rightarrow M / I_{G} M=M_{G}$, noting that $I_{H} \subset I_{G}$, and extending to higher dimensions by using Shapiro's lemma.
On the other hand, restriction in dimension 0 is $M_{G} \rightarrow M_{H}$ given by $m \mapsto \sum_{s \in S} s^{-1} m$, where $G=\bigcup_{s \in S} s H$.
(Hint: Consider the exact sequence of G or H modules $0 \rightarrow I_{G} \rightarrow \mathbb{Z}[G] \rightarrow \mathbb{Z} \rightarrow 0$ and take homology with respect to G and H and compare).
5. Prove that the Galois group of a finite extension of local fields is solvable, as follows. Let L / K be a finite Galois extension with Galois group G, with v_{K} a discrete normalized valuation of K which therefore admits a unique extension w to L. Let $v_{L}=e w$ be the associated normalized valuation of L, where e is the ramification index of L / K (i.e. we want $v_{K}\left(\pi_{K}\right)=v_{L}\left(\pi_{L}\right)=1$).
For every real number $s \geq-1$ define the $s^{\prime} t h$ ramification group of L / K by

$$
G_{s}=\left\{g \in G \mid v_{L}(g a-a) \geq s+1 \forall a \in \mathcal{O}_{L}\right\}
$$

(a) Prove that the G_{s} form a chain $G=G_{-1} \supset G_{0} \supset G_{1} \subset \ldots$ of normal subgroups of G.
(b) Show G_{-1} / G_{0} is cyclic.
(c) For every integer $s \geq 0$, define the $\operatorname{map} G_{s} / G_{s+1} \rightarrow U_{L}^{(s)} / U_{L}^{(s+1)}$ by sending g to $g\left(\pi_{L}\right) / \pi_{L}$. (Here $U_{L}^{(s)}=1+m_{L}^{s}$ for $s \geq 1$ and \mathcal{O}_{L}^{*} for $s=0$.) Show that this is a well-defined injective homomorphism independent of the choice of uniformizer π_{L}.
(d) Show that G_{s} / G_{s+1} is a finite abelian group for every $s \geq 1$. Conclude that G is solvable.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

