18.786 Problem Set 7 (due Thursday Apr 8 in class)

- 1. Let L, M be finite extensions of a field K.
 - (a) If L, M are Galois over K, then so is their compositum LM.
 - (b) If L, M are Abelian over K, so is LM.
 - (c) If K is a number field, \mathfrak{p} a prime of \mathcal{O}_K which is unramified in L and M, then \mathfrak{p} is unramified in LM.
- 2. Prove that $\widehat{\mathbb{Z}} := \lim_{\longleftarrow} \mathbb{Z}/N\mathbb{Z} \cong \prod_p \mathbb{Z}_p$. (Hint: use unique factorization and the Chinese remainder theorem.)
- 3. Let L/K be a finite extension of number fields. Let v be an absolute value on K (archimedean or nonarchimedean), and let K_v be the completion of K with respect to v.
 - (a) Show that every extension w to L of the valuation v arises as the composite $\bar{v} \circ \tau$ for some Kembedding $\tau : L \to \overline{K_v}$ into the algebraic closure of K_v (here \bar{v} is the unique extension of v to the
 algebraic closure), and that two such extensins $\bar{v} \circ \tau$ and $\bar{v} \circ \tau'$ are equal iff τ and τ' are conjugate
 over K_v .
 - (b) Show that $L \otimes K_v \cong \prod_{w|v} L_w$, where the product is over all valuations w which extend v. When v is non-archimedean corresponding to the prime \mathfrak{p} of \mathcal{O}_K , the w are in one-to-one correspondence with the primes \mathfrak{P} lying above \mathfrak{p} . (Hint: Use Proposition 2 of Samuel, section 5.2 to show this.)
 - (c) If L/K is Galois then show that all the extensions are conjugates. For G = Gal(L/K), let $G_w = \{g \in G \mid gw = w\}$. Show that L_w is Galois over K_v and G_w is its Galois group.
- 4. Let K be a nonarchimedean local field and \mathcal{O}_K its valuation ring. Let $U = \mathcal{O}_K^{\times}$ be the units of \mathcal{O}_K . Endow \mathcal{O}_K and U with the metric/topology induced from the valuation on K. Show that U is compact, and open and closed in \mathcal{O}_K . Show that a subgroup of the additive group \mathcal{O}_K is open iff it is of finite index, and the same statement for the multiplicative group U.
- 5. Show that cubic field K generated over \mathbb{Q} by a root of $x^3 x^2 2x 8$ is not monogenic. (Hint: figure out how 2 splits in K, and argue by contradiction.)
- 6. Let \mathbb{C}_p be the completion of $\overline{\mathbb{Q}}_p$. Show that \mathbb{C}_p is algebraically closed. (Hint: use Krasner's lemma.)

18.786 Topics in Algebraic Number Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.