18.786 Problem Set 7 (due Thursday Apr 8 in class)

1. Let L, M be finite extensions of a field K.
(a) If L, M are Galois over K, then so is their compositum $L M$.
(b) If L, M are Abelian over K, so is $L M$.
(c) If K is a number field, \mathfrak{p} a prime of \mathcal{O}_{K} which is unramified in L and M, then \mathfrak{p} is unramified in $L M$.
2. Prove that $\widehat{\mathbb{Z}}:=\lim \mathbb{Z} / N \mathbb{Z} \cong \prod_{p} \mathbb{Z}_{p}$. (Hint: use unique factorization and the Chinese remainder theorem.)
3. Let L / K be a finite extension of number fields. Let v be an absolute value on K (archimedean or nonarchimedean), and let K_{v} be the completion of K with respect to v.
(a) Show that every extension w to L of the valuation v arises as the composite $\bar{v} \circ \tau$ for some K embedding $\tau: L \rightarrow \overline{K_{v}}$ into the algebraic closure of K_{v} (here \bar{v} is the unique extension of v to the algebraic closure), and that two such extensins $\bar{v} \circ \tau$ and $\bar{v} \circ \tau^{\prime}$ are equal iff τ and τ^{\prime} are conjugate over K_{v}.
(b) Show that $L \otimes K_{v} \cong \prod_{w \mid v} L_{w}$, where the product is over all valuations w which extend v. When v is non-archimedean corresponding to the prime \mathfrak{p} of \mathcal{O}_{K}, the w are in one-to-one correspondence with the primes \mathfrak{P} lying above \mathfrak{p}. (Hint: Use Proposition 2 of Samuel, section 5.2 to show this.)
(c) If L / K is Galois then show that all the extensions are conjugates. For $G=\operatorname{Gal}(L / K)$, let $G_{w}=\{g \in G \mid g w=w\}$. Show that L_{w} is Galois over K_{v} and G_{w} is its Galois group.
4. Let K be a nonarchimedean local field and \mathcal{O}_{K} its valuation ring. Let $U=\mathcal{O}_{K}^{\times}$be the units of \mathcal{O}_{K}. Endow \mathcal{O}_{K} and U with the metric/topology induced from the valuation on K. Show that U is compact, and open and closed in \mathcal{O}_{K}. Show that a subgroup of the additive group \mathcal{O}_{K} is open iff it is of finite index, and the same statement for the multiplicative group U.
5. Show that cubic field K generated over \mathbb{Q} by a root of $x^{3}-x^{2}-2 x-8$ is not monogenic. (Hint: figure out how 2 splits in K, and argue by contradiction.)
6. Let \mathbb{C}_{p} be the completion of $\overline{\mathbb{Q}}_{p}$. Show that \mathbb{C}_{p} is algebraically closed. (Hint: use Krasner's lemma.)

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

