### 18.786 Problem Set 5 (due Thursday Mar 11 in class)

1. Compute, with proof, the class group of the ring of integers of $Q(\sqrt{-5})$.
2. We saw in lecture that if $\alpha$ is an algebraic number all of whose conjugates have absolute value 1 , then $\alpha$ is a root of unity. Now suppose $x$ is a real algebraic integer such that $\alpha>1$ and all other conjugates of $\alpha$ lie on or inside the unit circle, and at least one lies on the unit circle. Such an $\alpha$ is called a Salem number. Show that the minimal polynomial $p(x)$ of $\alpha$ is reciprocal, i.e. $x^{\operatorname{deg} p} p(1 / x)=p$. Give three examples of Salem numbers.
3. Let $x \in \mathbb{Q}$. Let $\mathcal{M}(\mathbb{Q})=\{\infty, 2,3,5, \ldots\}$ be the set of normalized valuations of $\mathbb{Q}$. Show that $\prod_{v \in \mathcal{M}}|x|_{v}=1$.
4. Let $K$ be a field which is complete with respect to an archimedean valuation ||. Show that there is an isomorphism of $K$ with $\mathbb{R}$ or $\mathbb{C}$ which identifies the given valuation on $K$ with a valuation equivalent to the usual valuation on these fields. [Hint: show that you can assume w.lo.g that $\mathbb{R} \subset K$ and then show that every element of $K$ is algebraic over $\mathbb{R}$ of degree at most 2.]
5. Compute a generator for the units of the real quadratic fields $\mathbb{Q}(\sqrt{137})$ and $\mathbb{Q}(\sqrt{139})$.
6. Let $\zeta=e^{2 \pi i / 11}$ be a primitive eleventh root of unity, and $K=\mathbb{Q}(\zeta)$. Give an explicit basis for a finite index subgroup of the group of units of $\mathcal{O}_{K}$. Check your answer using the logarithmic embedding (and gp).

MIT OpenCourseWare
http://ocw.mit.edu

### 18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

