18.786 Problem Set 4 (due Thursday Mar 4 in class)

1. Let $\left.\left|\left.\right|_{1}\right.$ and $|\right|_{2}$ be two norms on a field K. Show that they are equivalent (i.e. $|x|_{1}<1 \Longleftrightarrow|x|_{2}<1$ for all $x \in K$) if and only if there is a positive real number s such that $|x|_{1}=|x|_{2}^{s}$ for all $x \in K$. Also show that they are equivalent iff they induce the same topology on K.
2. For which $s>0$ is $\left.\right|_{\infty} ^{s}$ on \mathbb{Q} an absolute value? Prove your answer.
3. Let $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n}$ be a power series in $\mathbb{Q}_{p}[[X]]$, and define $\rho=\frac{1}{\limsup \sqrt[n]{\left|a_{n}\right|}}$ (here $\left|\left|=| |_{p}\right.\right.$ is the p-adic norm). Suppose that $0<\rho<\infty$. Show that

- If $\lim _{n \rightarrow \infty}\left|a_{n}\right| \rho^{n}$ exists and equals 0 , then $f(x)$ converges for $x \in \mathbb{Q}_{p}$ iff $|x| \leq \rho$.
- If $\left|a_{n}\right| \rho^{n}$ does not tend to 0 as $n \rightarrow \infty$, then $f(x)$ converges for $x \in \mathbb{Q}_{p}$ iff $|x|<\rho$. Find the domain of convergence for the exponential and logarithmic series:

$$
\exp (X)=\sum_{n=0}^{\infty} \frac{X^{n}}{n!}, \quad \log (1+X)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{X^{n}}{n}
$$

4. Let K be a field complete for a nonarchimedean valuation, and extend the valuation of K (uniquely) to the algebraic closure. Now suppose α, β are elements of \bar{K}, such that α is separable over $K(\beta)$, and such that for all conjugates $\alpha_{i} \neq \alpha$ of α over $K(\beta)$, we have

$$
|\beta-\alpha|<\left|\alpha_{i}-\alpha\right|
$$

Then show that $\alpha \in K(\beta)$.
5. Let K be a field complete for the nonachimedean exponential valuation v. Let $f(X)=a_{0}+a_{1} X+\cdots+$ $a_{n} X^{n} \in K[X]$ be a polynomial with $a_{0} a_{n} \neq 0$. Now to this polynomial, associate a finite polygonal chain, which is the lower convex hull of the points $\left(i, v\left(a_{i}\right)\right)$ in the plane. This is called the Newton polygon of f. Show that to every line segment of this polygon of slope $-m$, from say $\left(r, v\left(a_{r}\right)\right)$ to ($s, v\left(a_{s}\right)$), correspond exactly $s-r$ roots of f of valuation m (in the splitting field of f).
6. Use gp/Pari to compute the class numbers of quadratic fields $\mathbb{Q}(\sqrt{d})$ for $|d|<1000$, and report on any patterns noticed. In particular, pay attention to the factors of 2 .
7. Let $f(x)=8 x^{3}-6 x-1$: this is the minimal polynomial of $\cos (\pi / 9)$, which is used to show that we cannot trisect a general angle using ruler and compasses. Use Hensel's lemma (or modify Newton's method p-adically) to find a solution in \mathbb{Q}_{17} to precision $O\left(17^{20}\right)$ [write a loop, do not use polrootspadic()].

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

