18.786 Problem Set 3 (due Thursday Feb 25 in class)

- 1. An order of a number field K is a subring (with 1) of \mathcal{O}_K which is free of rank $[K : \mathbb{Q}]$ as a \mathbb{Z} -module. Describe (with proof) all the orders of a quadratic field $\mathbb{Q}(\sqrt{d})$.
- 2. Let m > 1 be a squarefree composite integer. Show that $\mathbb{Z}[\sqrt{-m}]$ is not a PID.
- 3. Let A be a Dedekind domain which has a unique nonzero maximal ideal. Show that A is a PID.

18.786 Topics in Algebraic Number Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.