18.786 Problem Set 3 (due Thursday Feb 25 in class)

1. An order of a number field K is a subring (with 1) of \mathcal{O}_{K} which is free of $\operatorname{rank}[K: \mathbb{Q}]$ as a \mathbb{Z}-module. Describe (with proof) all the orders of a quadratic field $\mathbb{Q}(\sqrt{d})$.
2. Let $m>1$ be a squarefree composite integer. Show that $\mathbb{Z}[\sqrt{-m}]$ is not a PID.
3. Let A be a Dedekind domain which has a unique nonzero maximal ideal. Show that A is a PID.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

