18.786 Problem Set 2 (due Thursday Feb 18)

1. Show that for p a prime, $r \geq 1$, the polynomial $\frac{X^{p^{r}}-1}{X^{p^{r-1}}-1}$ is irreducible in $\mathbb{Q}[x]$. Compute the ring of integers of $\mathbb{Q}\left(\zeta_{p^{r}}\right)$ and therefore the discriminant of this cyclotomic field.
2. Let K be a number field. Show that $\alpha \in \mathcal{O}_{K}$ is a unit iff $\operatorname{Nm}_{K / \mathbb{Q}}(\alpha)= \pm 1$. Let $p \neq q$ be primes. Show that $\zeta_{p q}-1 \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p q}\right)}$ is a unit.
3. Give an explicit example of a non-perfect field K and a finite extension L of K, with a basis x_{1}, \ldots, x_{n} of L over K, such that $D\left(x_{1}, \ldots, x_{n}\right)=0$.
4. Compute the units of the ring of integers of the imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ for $d<0$.

5 . Compute the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$.
6. What is the unique quadratic subfield of $\mathbb{Q}\left(\zeta_{p}\right)$?
7. Let $B \subset B^{\prime}$ be A-algebras (i.e. there is a ring homomorphism $A \rightarrow B$), with B^{\prime} integral over B, and let C be another A-algebra. Show that $B^{\prime} \otimes_{A} C$ is integral over $B \otimes_{A} C$.
8. Prove the Noether normalization lemma: Let k be a field, and A be a finitely generated algebra over k. Then there exist $x_{1}, \ldots, x_{n} \in A$ which are algebraically independent over k and such that A is integral over $k\left[x_{1}, \ldots, x_{n}\right]$.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

