23 Tate cohomology

In this lecture we introduce a variant of group cohomology known as Tate cohomology, and we define the Herbrand quotient (a ratio of cardinalities of two Tate cohomology groups), which will play a key role in our proof of Artin reciprocity. We begin with a brief review of group cohomology, restricting our attention to the minimum we need to define the Tate cohomology groups we will use. At a number of points we will need to appeal to some standard results from homological algebra whose proofs can be found in Section 23.6. For those seeking a more thorough introduction to group cohomology, see [1]; for general background on homological algebra, we recommend [7].

23.1 Group cohomology

Definition 23.1. Let G be a group. A G-module is an abelian group A equipped with a G-action compatible with its group structure: $g(a+b)=g a+g b$ for all $g \in G, a, b \in A .{ }^{1}$ This implies $|g a|=|a|$ (where $|a|:=\#\langle a\rangle$ is the order of a); in particular $g a=0 \Leftrightarrow a=0$.

A trivial G-module is an abelian group with trivial G-action: $g a=a$ for all $g \in G, a \in A$ (so every abelian group can be viewed as a trivial G-module). A morphism of G-modules is a morphism of abelian groups $\alpha: A \rightarrow B$ satisfying $\alpha(g a)=g \alpha(a)$. Kernels, images, quotients, and direct sums of G-modules are also G-modules.

Definition 23.2. Let A be a G-module. The G-invariants of A constitute the G-module

$$
A^{G}:=\{a \in A: g a=a \text { for all } g \in G\}
$$

consisting of elements fixed by G. It is the largest trivial G-submodule of A.
Definition 23.3. Let A be a G-module and let $n \in \mathbb{Z}_{\geq 0}$. The group of n-cochains is the abelian group $C^{n}(G, A):=\operatorname{Map}\left(G^{n}, A\right)$ of maps of sets $f: G^{n} \rightarrow A$ under pointwise addition. We have $C^{0}(G, A) \simeq A$, since $G^{0}=\{1\}$ is a singleton set. The nth coboundary map $d^{n}: C^{n}(G, A) \rightarrow C^{n+1}(G, A)$ is the homomorphism of abelian groups defined by

$$
\begin{aligned}
d^{n}(f)\left(g_{0}, \ldots, g_{n}\right):= & g_{0} f\left(g_{1}, \ldots, g_{n}\right)-f\left(g_{0} g_{1}, g_{2}, \ldots, g_{1}\right)+f\left(g_{0}, g_{1} g_{2}, \ldots, g_{n}\right) \\
& \cdots+(-1)^{n} f\left(g_{0}, \ldots, g_{i-1}, g_{n-1} g_{n}\right)+(-1)^{n+1} f\left(g_{0}, \ldots, g_{n-1}\right) .
\end{aligned}
$$

The group $C(G, A)$ contains subgroups of n-cocycles and n-coboundaries defined by

$$
Z^{n}(G, A):=\operatorname{ker} d^{n} \quad \text { and } \quad B^{n}(G, A):=\operatorname{im} d^{n-1}
$$

with $B^{0}(G, A):=\{0\}$.
The coboundary map satisfies $d^{n+1} \circ d^{n}=0$ for all $n \geq 0$ (this can be verified directly, but we will prove it in the next section), thus $B^{n}(G, A) \subseteq Z^{n}(G, A)$ for $n \geq 0$ and the groups $C^{n}(G, A)$ with connecting maps d^{n} form a cochain complex

$$
0 \longrightarrow C^{0}(G, A) \xrightarrow{d^{0}} C^{1}(G, A) \xrightarrow{d^{1}} C^{2}(G, A) \longrightarrow \cdots
$$

that we may denote \mathcal{C}_{A}. In general, a cochain complex (of abelian groups) is simply a sequence of homomorphisms d^{n} that satisfy $d^{n+1} \circ d^{n}=0$. Cochain complexes form a category whose morphisms are commutative diagrams with cochain complexes as rows.

[^0]Definition 23.4. Let A be a G-module. The nth cohomology group of G with coefficients in A is the abelian group

$$
H^{n}(G, A):=Z^{n}(G, A) / B^{n}(G, A)
$$

Example 23.5. We can work out the first few cohomology groups explicitly by writing out the coboundary maps and computing kernels and images:

- $d^{0}: C^{0}(G, A) \rightarrow C^{1}(G, A)$ is defined by $d^{0}(a)(g):=g a-a\left(\right.$ note $\left.C^{0}(G, A) \simeq A\right)$.
- $H^{0}(A, G) \simeq \operatorname{ker} d^{0}=A^{G}\left(\right.$ note $\left.B^{0}(G, A)=\{0\}\right)$.
- $\operatorname{im} d^{0}=\{f: G \rightarrow A \mid \exists a \in A: f(g)=g a-a$ for all $g \in G\}$ (principal crossed homomorphisms).
- $d^{1}: C^{1}(G, A) \rightarrow C^{2}(G, A)$ is defined by $d^{1}(f)(g, h):=g f(h)-f(g h)+f(g)$.
- $\operatorname{ker} d^{1}=\{f: G \rightarrow A \mid f(g h)=f(g)+g f(h)$ for all $g \in G\}$ (crossed homomorphisms).
- $H^{1}(G, A)=$ crossed homomorphisms modulo principal crossed homomorphisms.
- If A is a trivial G-module then $H^{1}(G, A) \simeq \operatorname{Hom}(G, A)$.

Lemma 23.6. Let $\alpha: A \rightarrow B$ be a morphism of G-modules. We have induced group homomorphisms $\alpha^{n}: C^{n}(G, A) \rightarrow C^{n}(G, B)$ defined by $f \mapsto \alpha \circ f$ that commute with the coboundary maps. In particular, α^{n} maps cocycles to cocycles and coboundaries to coboundaries and thus induces homomorphisms $\alpha^{n}: H^{n}(G, A) \rightarrow H^{n}(G, B)$ of cohomology groups, and we have a morphism of cochain complexes $\alpha: \mathcal{C}_{A} \rightarrow \mathcal{C}_{B}$:

Proof. Consider any $n \geq 0$. For all $f \in C^{n}(G, A)$, and $g_{0}, \ldots, g_{n} \in G$ we have

$$
\begin{aligned}
\alpha^{n+1}\left(d^{n}(f)\left(g_{0}, \ldots, g_{n}\right)\right) & =\alpha^{n+1}\left(g_{0} f\left(g_{1}, \ldots, g_{n}\right)-\cdots+(-1)^{n+1} f\left(g_{0}, \ldots, g_{n-1}\right)\right) \\
& =g_{0}(\alpha \circ f)\left(g_{1}, \ldots, g_{n}\right)-\cdots+(-1)^{n+1}(\alpha \circ f)\left(g_{0}, \ldots, g_{n-1}\right) \\
& =d^{n}(\alpha \circ f)\left(g_{0}, \ldots, g_{n}\right)=d^{n}\left(\alpha^{n}(f)\right)\left(g_{0}, \ldots, g_{n}\right),
\end{aligned}
$$

thus $\alpha^{n+1} \circ d^{n}=d^{n} \circ \alpha^{n}$. The lemma follows.
Lemma 23.6 implies that we have a family of functors $H^{n}(G, \bullet)$ from the category of G modules to the category of abelian groups (note that id $\circ f=f$ and $(\alpha \circ \beta) \circ f=\alpha \circ(\beta \circ f)$), and also a functor from the category of G-modules to the category of cochain complexes.

Lemma 23.7. Suppose that we have a short exact sequence of G-modules

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0 .
$$

Then for every $n \geq 0$ we have a corresponding exact sequence of n-cochains

$$
0 \longrightarrow C^{n}(G, A) \xrightarrow{\alpha^{n}} C^{n}(G, B) \xrightarrow{\beta^{n}} C^{n}(G, C) \longrightarrow 0
$$

Proof. The injectivity of α^{n} follows from the injectivity of α. If $f \in \operatorname{ker} \beta^{n}$, then $\beta \circ f=0$ and $\operatorname{im} f \subseteq \operatorname{ker} \beta=\operatorname{im} \alpha$. Via the bijection $\alpha^{-1}: \operatorname{im} \alpha \rightarrow A$ we can define $\alpha^{-1} \circ f \in$ $C^{n}(G, A)$, thus $\operatorname{im} \alpha^{n} \subseteq \operatorname{ker} \beta^{n}$. We also have $\operatorname{ker} \beta^{n} \subseteq \alpha^{n}$, since $\beta \circ \alpha \circ f=0 \circ f=0$ for all $f \in C^{n}(G, B)$, and exactness at $C^{n}(G, B)$ follows. Every $f \in C^{n}(G, C)$ satisfies $\operatorname{im} f \subseteq C=\operatorname{im} \beta$, and we can define $h \in C^{n}(G, B)$ satisfying $\beta \circ h=f$: for each g_{0}, \ldots, g_{n} let $h\left(g_{0}, \ldots, g_{n}\right)$ be any element of $\beta^{-1}\left(f\left(g_{0}, \ldots, g_{n}\right)\right)$. Thus $f \in \operatorname{im} \beta^{n}$ and β^{n} is surjective.

Lemmas $\underline{23.6}$ and $\underline{23.7}$ together imply that we have an exact functor from the category of G-modules to the category of cochain complexes.

Theorem 23.8. Every short exact sequence of G-modules

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

induces a long exact sequence of cohomology groups

$$
0 \rightarrow H^{0}(G, A) \xrightarrow{\alpha^{0}} H^{0}(G, B) \xrightarrow{\beta^{0}} H^{0}(G, C) \xrightarrow{\delta^{0}} H^{1}(G, A) \longrightarrow \cdots
$$

and commutative diagrams of short exact sequences of G-modules induce corresponding commutative diagrams of long exact sequences of cohomology groups.

Proof. Lemmas $\underline{23.6}$ and $\underline{23.7}$ gives us the commutative diagram

We have $B^{n}(G, A) \subseteq Z^{n}(G, A) \subseteq C^{n}(G, A) \xrightarrow{d^{n}} B^{n+1}(G, A) \subseteq Z^{n+1}(G, A) \subseteq C^{n+1}$, thus d^{n} induces a homomorphism $d^{n}: C^{n}(G, A) / B^{n}(G, A) \rightarrow Z^{n+1}(G, A)$, and similarly for the G-modules B and C. The fact that α^{n} maps coboundaries to coboundaries and cocycles to cocycles implies that we have induced maps $C^{n}(G, A) / B^{n}(G, A) \rightarrow C^{n}(G, B) / B^{n}(G, B)$ and $Z^{n+1}(G, B) \rightarrow Z^{n+1}(G, B)$; similar comments apply to β^{n}.

We thus have the following commutative diagram:

The kernels of the vertical maps d^{n} are (by definition) the cohomology groups $H^{n}(G, A)$, $H^{n}(G, B), H^{n}(G, C)$, and the cokernels are $H^{n+1}(G, A), H^{n+1}(G, B), H^{n+1}(G, C)$. Applying the snake lemma yields the exact sequence

$$
H^{n}(G, A) \xrightarrow{\alpha^{n}} H^{n}(G, B) \xrightarrow{\beta^{n}} H^{n}(G, C) \xrightarrow{\delta^{n}} H^{n+1}(G, A) \xrightarrow{\alpha^{n+1}} H^{n+1}(G, B) \xrightarrow{\beta^{n+1}} H^{n+1}(G, C),
$$

where α^{n} and β^{n} are the homomorphisms in cohomology induced by α and β (coming from α^{n} and β^{n} in the previous diagram via Lemma 23.6), and the connecting homomorphism δ^{n} given by the snake lemma can be explicitly described as

$$
\begin{aligned}
\delta^{n}: H^{n}(G, C) & \rightarrow H^{n+1}(G, A) \\
{[f] } & \mapsto\left[\alpha^{-1} \circ d^{n}(\hat{f})\right]
\end{aligned}
$$

where $[f]$ denotes the cohomology class of a cocycle $f \in C^{n}(G, C)$ and $\hat{f} \in C^{n}(G, B)$ is a cochain satisfying $\beta \circ \hat{f}=f$. Here α^{-1} denotes the inverse of the isomorphism $A \rightarrow \alpha(A)$. The fact that δ^{n} is well defined (independent of the choice of \hat{f}) is part of the snake lemma. The map $H^{0}(G, A) \rightarrow H^{0}(G, B)$ is the restriction of $\alpha: A \rightarrow B$ to A^{G}, and is thus injective (recall that $\left.H^{0}(G, A) \simeq A^{G}\right)$. This completes the first part of the proof.

For the second part, suppose we have the following commutative diagram of short exact sequences of G-modules

By Lemma $\underline{23.6}$, to verify the commutativity of the corresponding diagram of long exact sequences in cohomology we only need to check commutativity at squares of the form

Let $f: G^{n} \rightarrow C$ be a cocycle and choose $\hat{f} \in C^{n}(G, B)$ such that $\beta \circ \hat{f}=f$. We have

$$
\phi^{n+1}\left(\delta^{n}([f])\right)=\phi^{n+1}\left(\left[\alpha^{-1} \circ d^{n}(\hat{f})\right]=\left[\phi \circ \alpha^{-1} \circ d^{n}(\hat{f})\right] .\right.
$$

Noting that $\varphi \circ f=\varphi \circ \beta \circ \hat{f}=\beta^{\prime} \circ \psi \circ \hat{f}$ and $\phi \circ \alpha^{-1}=\alpha^{\prime-1} \circ \psi\left(\right.$ as maps $\left.\alpha(A) \rightarrow A^{\prime}\right)$ yields

$$
\delta^{\prime n}\left(\varphi^{n}([f])=\delta^{\prime n}\left(\left[\beta^{\prime} \circ \psi \circ f\right]\right)=\left[\alpha^{\prime-1} \circ d^{n}(\psi \circ \hat{f})\right]=\left[\alpha^{\prime-1} \circ \psi \circ d^{n}(\hat{f})\right]=\left[\phi \circ \alpha^{-1} \circ d^{n}(\hat{f})\right],\right.
$$

thus diagram (1) commutes as desired.
Definition 23.9. A family of functors F^{n} from the category of G-modules to the category of abelian groups that associates to each short exact sequence of G-modules a long exact sequence of abelian groups such that commutative diagrams of short exact sequences yield commutative diagrams of long exact sequences is called a δ-functor. A δ-functor is said to be cohomological if the connecting homomorphisms in long exact sequences are of the form $\delta^{n}: F^{n}(G, C) \rightarrow F^{n+1}(G, A)$. If we instead have $\delta^{n}: F^{n+1}(G, C) \rightarrow F^{n}(G, A)$ then the δ-functor is homological.

Theorem 23.54 implies that the family of functors $H^{n}(G, \bullet)$ is a cohomological δ-functor. In fact is the universal cohomological δ-functor (it satisfies a universal property that determines it up to a unique isomorphism of δ-functors), but we will not explore this further.

23.2 Cohomology via free resolutions

Recall that the group ring $\mathbb{Z}[G]$ consists of formal sums $\sum_{g} a_{g} g$ indexed by $g \in G$ with coefficients $a_{g} \in \mathbb{Z}$, all but finitely many zero. Multiplication is given by \mathbb{Z}-linearly extending the group operation in G; the ring $\mathbb{Z}[G]$ is commutative if and only if G is. As an abelian group under addition, $\mathbb{Z}[G]$ is the free \mathbb{Z}-module with basis G.

The notion of a G-module defined in the previous section is equivalent to that of a (left) $\mathbb{Z}[G]$-module: to define multiplication by $\mathbb{Z}[G]$ one must define a G-action, and the
G-action on a G-module extends \mathbb{Z}-linearly, since every G-module is also a \mathbb{Z}-module. The multiplicative identity 1 of the ring $\mathbb{Z}[G]$ is the identity element of G; the additive identity 0 is the empty sum, which acts on A by sending $a \in A$ to the identity element of $A .{ }_{-}^{2}$

For any $n \geq 0$ we view $\mathbb{Z}\left[G^{n}\right]$ as a G-module with G acting diagonally on the left: $g \cdot\left(g_{1}, \ldots, g_{n}\right):=\left(g g_{1}, \ldots, g g_{n}\right)$. This makes $\mathbb{Z}\left[G^{0}\right]=\mathbb{Z}$ a trivial G-module (here we are viewing the empty tuple as the identity element of the trivial group G^{0}).

Definition 23.10. Let G be a group. The standard resolution of \mathbb{Z} by G-modules is the exact sequence of G-module homomorphisms

$$
\cdots \longrightarrow \mathbb{Z}\left[G^{n+1}\right] \xrightarrow{d_{n}} \mathbb{Z}\left[G^{n}\right] \longrightarrow \cdots \xrightarrow{d_{1}} \mathbb{Z}[G] \xrightarrow{d_{0}} \mathbb{Z} \longrightarrow 0,
$$

where the boundary maps d_{n} are defined by

$$
d_{n}\left(g_{0}, \ldots, g_{n}\right):=\sum_{i=0}^{n}(-1)^{i}\left(g_{0}, \ldots, \hat{g}_{i}, \ldots, g_{n}\right)
$$

and extended \mathbb{Z}-linearly (the notation \hat{g}_{i} means omit g_{i} from the tuple). The map d_{0} sends each $g \in G$ to 1 , and extends to the map $\sum_{g} a_{g} g \mapsto \sum_{g} a_{g}$, which is also known as the augmentation map and may be denoted ε.

Let us verify the exactness of the standard resolution.
Lemma 23.11. The standard resolution of \mathbb{Z} by G-modules is exact.
Proof. The map d_{0} is clearly surjective. To check $\operatorname{im} d_{n+1} \subseteq \operatorname{ker} d_{n}$ it suffices to note that for any $g_{0}, \ldots, g_{n} \in G$ we have

$$
\begin{aligned}
d_{n}\left(d_{n+1}\left(g_{0}, \ldots, g_{n}\right)\right)=\sum_{0 \leq i \leq n}(& \sum_{0 \leq j<i}(-1)^{i+j}\left(g_{0}, \ldots, \hat{g}_{j}, \ldots, \hat{g}_{i} \ldots, g_{n}\right)+ \\
& \left.\sum_{i<j \leq n}(-1)^{i+j-1}\left(g_{0}, \ldots, \hat{g}_{i}, \ldots, \hat{g}_{j}, \ldots, g_{n}\right)\right)=0
\end{aligned}
$$

Let G_{1}^{n+1} be the subgroup $1 \times G^{n}$ of G^{n+1}, and let $h: \mathbb{Z}\left[G^{n+1}\right] \rightarrow \mathbb{Z}\left[G_{1}^{n+2}\right] \subseteq \mathbb{Z}\left[G^{n+2}\right]$ be the \mathbb{Z}-linear map defined by $\left(g_{0}, \ldots, g_{n+1}\right) \mapsto\left(1, g_{0}, \ldots, g_{n+1}\right)$. For $x \in \mathbb{Z}\left[G^{n+1}\right]$ we have $d_{n+1}(h(x)) \in x+\mathbb{Z}\left[G_{1}^{n+1}\right]$, and if $x \in \operatorname{ker} d_{n}$ then $x-d_{n+1}(h(x)) \in \operatorname{ker} d_{n} \cap \mathbb{Z}\left[G_{1}^{n+1}\right]$, since $\operatorname{im} d_{n+1} \subseteq \operatorname{ker} d_{n}$. To prove $\operatorname{ker} d_{n} \subseteq \operatorname{im} d_{n+1}$, it suffices to show $\operatorname{ker} d_{n} \cap \mathbb{Z}\left[G_{1}^{n+1}\right] \subseteq \operatorname{im} d_{n+1}$. For $n=0$ we have $\operatorname{ker} d_{0} \cap \mathbb{Z}\left[G_{1}^{1}\right]=\{0\}$, and we now proceed by induction on $n \geq 1$.

Let $G_{11}^{n+1}:=1 \times 1 \times G^{n-1} \subseteq G_{1}^{n+1}$. We can write the free \mathbb{Z}-module $\mathbb{Z}\left[G_{1}^{n+1}\right]$ as the internal direct sum $\mathbb{Z}\left[G_{11}^{n+1}\right]+X$, where X is generated by elements of the form $\left(1, g_{1}, \ldots, g_{n}\right)$ with $g_{1} \neq 1$ (if $G=\{1\}$ then $X=\{0\}$). We have $d(x)\left(g_{1}, \ldots, g_{n}\right)=x\left(1, g_{1}, \ldots, g_{n}\right)$ (here we use functional notation) for all $x \in X$, since $g_{1} \neq 1$, and this implies $X \cap \operatorname{ker} d_{n}=\{0\}$. It thus suffices to show $\operatorname{ker} d_{n} \cap \mathbb{Z}\left[G_{11}^{n+1}\right] \subseteq \operatorname{im} d_{n+1}$.

Let $x \in \operatorname{ker} d_{n} \cap \mathbb{Z}\left[G_{11}^{n+1}\right]$. If $n=1$ then $x=d_{2}(h(x)) \in \operatorname{im} d_{n+1}$. For $n \geq 2$, let $\pi: \mathbb{Z}\left[G^{n+1}\right] \rightarrow \mathbb{Z}\left[G^{n-1}\right]$ be the \mathbb{Z}-linear map defined by $\left(g_{0}, g_{1}, g_{2}, \ldots, g_{n}\right) \mapsto\left(g_{2}, \ldots, g_{n}\right)$. We have $\pi(x) \in \operatorname{ker} d_{n-2} \subset \operatorname{im} d_{n-1}$ (by the inductive hypothesis), and for any $y \in d_{n-1}^{-1}(\pi(x))$ we have $x=d_{n+1}\left(h_{11}(y)\right) \in \operatorname{im} d_{n+1}$, where $h_{11}: \mathbb{Z}\left[G^{n-1}\right] \rightarrow \mathbb{Z}\left[G^{n+1}\right]$ is the \mathbb{Z}-linear map defined by $\left(g_{0}, \ldots, g_{n-1}\right) \mapsto\left(g_{0}, \ldots, g_{n+1}\right)$. Thus ker $d_{n} \cap \mathbb{Z}\left[G_{11}^{n+1}\right] \subseteq \operatorname{im} d_{n+1}$ as desired.

[^1]Definition 23.12. Let R be a (not necessarily commutative) ring. A free resolution P of a (left) R-module M is an exact sequence of free (left) R-modules P_{n}

$$
\cdots \xrightarrow{d_{n+1}} P_{n+1} \xrightarrow{d_{n}} P_{n} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{1}} P_{1} \xrightarrow{d_{0}} M \longrightarrow 0 .
$$

Free resolutions arise naturally as presentations of an R-module. Every R-module M admits a surjection from a free module (one can always take P_{1} to be the free R-module with basis M). This yields an exact sequence $P_{1} \rightarrow M \rightarrow 0$, and the kernel of the homomorphism on the left is itself an R-module that admits a surjection from a free R-module P_{2}; continuing in this fashion yields a free resolution.

Now let A be an abelian group. If we truncate the free resolution P by removing the R-module M and apply the contravariant left exact functor $\operatorname{Hom}_{R}(\bullet, A)$ we obtain a cochain complex of R-modules ${ }_{-}^{3}$

$$
\cdots \stackrel{d_{n+1}^{*}}{\leftarrow} P_{n+1}^{*} \stackrel{d_{n}^{*}}{\leftarrow} P_{n}^{*} \stackrel{d_{n-1}^{*}}{\leftarrow} \cdots \stackrel{d_{1}^{*}}{\leftarrow} P_{1}^{*} \longleftarrow 0 .
$$

where $d_{n}^{*}(\varphi):=\varphi \circ d_{n}$. The maps d_{n}^{*} satisfy $d_{n+1}^{*} \circ d_{n}^{*}=0$: for all $\varphi \in \operatorname{Hom}_{R}\left(P_{n}, A\right)$ we have

$$
\left(d_{n+1}^{*} \circ d_{n}^{*}\right)(\varphi)=\left(d_{n} \circ d_{n+1}\right)^{*}(\varphi)=\varphi \circ d_{n} \circ d_{n+1}=\varphi \circ 0=0 .
$$

This cochain complex need not be exact, because the functor $\operatorname{Hom}_{R}(\bullet, A)$ is not rightexact, ${ }^{4}$ so we have potentially nontrivial cohomology groups $\operatorname{ker} d_{n+1}^{*} / \operatorname{im} d_{n}^{*}$, which are denoted $\operatorname{Ext}_{R}^{n}(M, A)$. A key result of homological algebra is that (up to isomorphism) these cohomology groups do not depend on the resolution P, only on A and M; see Theorem 23.71.

Recall that $\mathbb{Z}[G]$ is a free \mathbb{Z}-module (with basis G), and for all $n \geq 0$ we have

$$
\mathbb{Z}\left[G^{n+1}\right] \simeq \bigoplus_{\left(g_{1}, \ldots, g_{n}\right) \in G^{n}} \mathbb{Z}[G]\left(1, g_{1}, \ldots, g_{n}\right)
$$

It follows that the standard resolution is a free resolution of \mathbb{Z} by $\mathbb{Z}[G]$-modules; note that \mathbb{Z}, like any abelian group, can always be viewed as a trivial G-module, hence a $\mathbb{Z}[G]$-module.

With a free resolution in hand, we now want to consider the cochain complex

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G], A) \longrightarrow \cdots \longrightarrow \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[G^{n}\right], A\right) \xrightarrow{d_{n}^{*}} \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[G^{n+1}\right], A\right) \longrightarrow \cdots
$$

where d_{n}^{*} is defined by $\varphi \mapsto \varphi \circ d_{n}$. Let \mathcal{S}_{A} denote this cochain complex.
Proposition 23.13. Let A be a G-module. For every $n \geq 0$ we have an isomorphism of abelian groups

$$
\Phi^{n}: \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[G^{n+1}\right], A\right) \xrightarrow{\sim} C^{n}(G, A)
$$

that sends $\varphi: \mathbb{Z}\left[G^{n+1}\right] \rightarrow A$ to the function $f: G^{n} \rightarrow A$ defined by

$$
f\left(g_{1}, \ldots, g_{n}\right):=\varphi\left(1, g_{1}, g_{1} g_{2}, \ldots, g_{1} g_{2} \cdots g_{n}\right)
$$

The isomorphisms Φ^{n} satisfy $\Phi^{n+1} \circ d_{n+1}^{*}=d^{n} \circ \Phi^{n}$ for all $n \geq 0$ and thus define an isomorphism of cochain complexes $\Phi_{A}: \mathcal{S}_{A} \rightarrow \mathcal{C}_{A}$.

[^2]Proof. We first check that Φ^{n} is injective. Let $\varphi \in \operatorname{ker} \Phi^{n}$. Given $g_{0}, \ldots, g_{n} \in G$, let $h_{i}:=g_{i-1}^{-1} g_{i}$ for $1 \leq i \leq n$ so that $h_{1} \cdots h_{i}=g_{0}^{-1} g_{i}$ and observe that

$$
\varphi\left(g_{0}, \ldots, g_{n}\right)=g_{0} \varphi\left(1, g_{0}^{-1} g_{1}, \ldots, g_{0}^{-1} g_{n}\right)=g_{0} \varphi\left(1, h_{1}, h_{1} h_{2}, \ldots, h_{1} \cdots h_{n}\right)=0 .
$$

so $\varphi=0$ as desired. For surjectivity, let $f \in C^{n}(G, A)$ and define $\varphi \in \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[G^{n+1}\right], A\right)$ via $\varphi\left(g_{0}, \ldots, g_{n}\right):=g_{0} f\left(g_{0}^{-1} g_{1}, g_{1}^{-1} g_{2}, \ldots, g_{n-1}^{-1} g_{n}\right)$. For any $g_{1}, \ldots, g_{n} \in G$ we have

$$
\Phi^{n}(\varphi)\left(g_{1}, \ldots, g_{n}\right)=\varphi\left(1, g_{1}, g_{1} g_{2}, \ldots, g_{1} g_{2} \cdots g_{n}\right)=f\left(g_{1}, \ldots, g_{n}\right),
$$

so $f \in \operatorname{im} \Phi^{n}$ and Φ^{n} is surjective.
It is clear from the definition that $\Phi^{n}\left(\varphi_{1}+\varphi_{2}\right)=\Phi^{n}\left(\varphi_{1}\right)+\Phi^{n}\left(\varphi_{2}\right)$, so Φ^{n} is a bijective group homomorphism, hence an isomorphism. Finally, for any $\varphi \in \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[G^{n+1}\right], A\right)$ and $g_{1}, \ldots, g_{n+1} \in G$ we have

$$
\begin{aligned}
\left(\Phi^{n+1}\left(d_{n+1}^{*}(\varphi)\right)\left(g_{1}, \ldots, g_{n+1}\right)=\right. & d_{n+1}^{*}(\varphi)\left(1, g_{1}, g_{1} g_{2}, \ldots, g_{1} \cdots g_{n+1}\right) \\
= & \varphi\left(d_{n+1}\left(1, g_{1}, g_{1} g_{2}, \ldots, g_{1} \cdots g_{n+1}\right)\right) \\
= & \sum_{i=0}^{n+1}(-1)^{i} \varphi\left(1, g_{1}, \ldots, g_{1} \cdots g_{i-i}, g_{1} \cdots g_{i+1}, \ldots, g_{1} \cdots g_{n+1}\right) \\
= & g_{1} \Phi^{n}(\varphi)\left(g_{2}, \ldots, g_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \Phi^{n}(\varphi)\left(g_{1}, \ldots, g_{i-2}, g_{i-1} g_{i}, g_{i+1}, \ldots, g_{n+1}\right) \\
& +(-1)^{n+1} \Phi^{n}(\varphi)\left(g_{1}, \ldots, g_{n}\right) \\
= & d^{n}\left(\Phi^{n}(\varphi)\right)\left(g_{1}, \ldots, g_{n+1}\right),
\end{aligned}
$$

which shows that $\Phi^{n+1} \circ d_{n+1}^{*}=d_{n}^{*} \circ \Phi^{n}$ as claimed.

Corollary 23.14. Let A be a G-module. The cochain complexes \mathcal{S}_{A} and \mathcal{C}_{A} have the same cohomology groups, in other words, $H^{n}(G, A) \simeq \operatorname{Ext}_{\mathbb{Z}[G]}^{n}(\mathbb{Z}, A)$ for all $n \geq 0$, and we can compute $H^{n}(G, A)$ using any free resolution of \mathbb{Z} by G-modules.

Proof. This follows immediately from Proposition $\underline{23.13}$ and Theorem $\underline{23.71 .}$
Corollary 23.15. For any G-modules A and B we have

$$
H^{n}(G, A \oplus B) \simeq H^{n}(G, A) \oplus H^{n}(G, B)
$$

for all $n \geq 0$, and the isomorphism commutes with the natural inclusion and projection maps for the direct sums on both sides.

Proof. By Lemma 23.73, the functor $\operatorname{Ext}_{\mathbb{Z}}[G]^{n}(\mathbb{Z}, \bullet)$ is an additive functor.
Definition 23.16. A category containing finite coproducts (such as direct sums) in which each set of morphisms between objects has the structure of an abelian group whose addition distributes over composition (and vice versa) is called an additive category. A functor F between additive categories is an additive functor if it maps zero objects to zero objects and satisfies $F(X \oplus Y) \simeq F(X) \oplus F(Y)$, where the isomorphism commutes with the natural inclusion and projection maps for the direct sums on both sides.

Definition 23.17. Let G be a group and let A be an abelian group. The abelian group

$$
\operatorname{CoInd}^{G}(A):=\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A)
$$

with G-action defined by $(g \varphi)(z):=\varphi(z g)$ is the coinduced G-module associated to A.
Warning 23.18. Some texts $[\underline{3}, \underline{5}]$ use $\operatorname{Ind}^{G}(A)$ instead of $\operatorname{CoInd}^{G}(A)$ to denote the G module $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A)$ and refer to is as "induced" rather than "coinduced". Here we follow [1, 4, 7] and reserve the notation $\operatorname{Ind}^{G}(A)$ for the induced G-module $\mathbb{Z}[G] \otimes_{\mathbb{Z}} A$ defined below (see Definition 23.25). As shown by Lemma 23.27, this clash in terminology is fairly harmless when G is finite, since we then have $\operatorname{Ind}^{G}(A) \simeq \operatorname{CoInd}^{G}(A)$.

Lemma 23.19. Let G be a group and A an abelian group. Then $H^{0}\left(G, \operatorname{CoInd}^{G}(A)\right) \simeq A$ and $H^{n}\left(G, \operatorname{CoInd}^{G}(A)\right)=0$ for all $n \geq 1$.

Proof. For all $n \geq 1$ we have an isomorphims of abelian groups

$$
\begin{aligned}
\alpha: \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[G^{n}\right], \operatorname{CoInd}^{G}(A)\right) & \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}\left[G^{n}\right], A\right) \\
\varphi & \mapsto(z \mapsto \varphi(z)(1)) \\
(z \mapsto(y \mapsto \phi(y z))) & \longleftrightarrow \phi
\end{aligned}
$$

Indeed,

$$
\begin{aligned}
& \left.\alpha\left(\alpha^{-1}(\phi)\right)=\alpha(z \mapsto(y \mapsto \phi(y z)))\right)=(z \mapsto \phi(z))=\phi, \\
& \alpha^{-1}(\alpha(\varphi))=\alpha^{-1}(z \mapsto \varphi(z)(1))=(z \mapsto(y \mapsto \varphi(y z)(1)))=(z \mapsto \varphi(z))=\varphi .
\end{aligned}
$$

Thus computing $H^{n}\left(G, \operatorname{CoInd}^{G}(A)\right)$ using the standard resolution P of \mathbb{Z} by G-modules is the same as computing $H^{n}(\{1\}, A)$ using the resolution P viewed as a resolution of \mathbb{Z} by $\{1\}$-modules (abelian groups); note that $\mathbb{Z}\left[G^{n}\right]$ is also a free $\mathbb{Z}[\{1\}]$-module, and the G-module morphisms d_{n} in the standard resolution are also $\{1\}$-module morphisms (morphisms of abelian groups). Therefore $H^{n}\left(G, \operatorname{CoInd}^{G}(A)\right) \simeq H^{n}(\{1\}, A)$ for all $n \geq 0$.

But we can also compute $H^{n}(\{1\}, A)$ using the free resolution $\cdots \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0$, which implies $H^{n}(\{1\}, A)=0$ for $n \geq 1$ and $H^{0}(\{1\}, A) \simeq \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, A) \simeq A$.

23.3 Homology via free resolutions

In the previous section we applied the contravariant functor $\operatorname{Hom}_{\mathbb{Z}[G]}(\bullet, A)$ to the truncation of the standard resolution of \mathbb{Z} by G-modules to get a cochain complex with cohomology groups $H^{n}(G, A) \simeq \operatorname{Ext}_{\mathbb{Z}] G]}^{n}(\mathbb{Z}, A)$. If we do the same thing using the covariant functor $\bullet \otimes_{\mathbb{Z}[G]} A$ we get a chain complex (of \mathbb{Z}-modules)

$$
\cdots \longrightarrow \mathbb{Z}\left[G^{n+1}\right] \otimes_{\mathbb{Z}[G]} A \xrightarrow{d_{n *}} \mathbb{Z}\left[G^{n}\right] \otimes_{\mathbb{Z}[G]} A \longrightarrow \cdots \longrightarrow \mathbb{Z}[G] \otimes_{\mathbb{Z}[G]} A \longrightarrow 0
$$

where $d_{n *}$ is defined by $\left(g_{0}, \ldots, g_{n}\right) \otimes a \mapsto d_{n}\left(g_{0}, \ldots, g_{n}\right) \otimes a$. One minor technical point: in order for these tensor products to make sense we need to view $\mathbb{Z}\left[G^{n}\right]$ as a right $\mathbb{Z}[G]$-module, so we define $\left(g_{1}, \ldots, g_{n}\right) \cdot g:=\left(g_{1} g, \ldots, g_{n} g\right)$; the corresponding G-module is isomorphic to the left $\mathbb{Z}[G]$-module defined above (right action by g corresponds to left action by g^{-1}).

We then have homology groups $\operatorname{ker} d_{n *} / \operatorname{im} d_{n+1_{*}}$. As with the groups Ext $\mathbb{E}_{\mathbb{Z}}[G]^{n}(\mathbb{Z}, A)$, we get the same homology groups using any free resolution of \mathbb{Z} by right $\mathbb{Z}[G]$-modules, and they are generically denoted $\operatorname{Tor}_{n}^{\mathbb{Z}[G]}(\mathbb{Z}, A)$; see Theorem $\underline{23.75}$.

Definition 23.20. Let A be a G-module. The nth homology group of G with coefficients in A is the abelian group $H_{n}(G, A):=\operatorname{Tor}_{n}^{\mathbb{Z}[G]}(\mathbb{Z}, A)$. If $\alpha: A \rightarrow B$ is a morphism of G modules, the natural morphism $\alpha_{n}: H_{n}(G, A) \rightarrow H_{n}(G, B)$ is given by $x \otimes a \mapsto x \otimes \varphi(a)$. Each $H_{n}(G, \bullet)$ is a functor from the category of G-modules to the category of abelian groups.

The family of functors $H_{n}(G, \bullet)$ is a homological δ-functor.
Theorem 23.21. Every short exact sequence of G-modules

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

induces a long exact sequence of homology groups

$$
\cdots \longrightarrow H_{1}(G, C) \xrightarrow{\delta_{0}} H_{0}(G, A) \xrightarrow{\alpha_{0}} H_{0}(G, B) \xrightarrow{\beta_{0}} H_{0}(G, C) \longrightarrow 0,
$$

and commutative diagrams of short exact sequences of G-modules induce corresponding commutative diagrams of long exact sequences of homology groups.

Proof. The proof is directly analogous to that of Theorem $\underline{23.8}$ (or see Theorem 23.50).
As with $H^{n}(G, \bullet)$, the functors $H_{n}(G, \bullet)$ are additive functors.
Corollary 23.22. For any G-modules A and B we have

$$
\left.H_{n}(G, A \oplus B) \simeq H_{(} G, A\right) \oplus H_{n}(G, B)
$$

for all $n \geq 0$, and the isomorphism commutes with the natural inclusion and projection maps for the direct sums on both sides.
Proof. By Lemma $\underline{23.77}$, the functor $\operatorname{Tor}_{n}^{\mathbb{Z}[G]}(\mathbb{Z}, \bullet)$ is an additive functor.
For $n=0$ we have

$$
H_{0}(G, A):=\operatorname{Tor}_{0}^{\mathbb{Z}[G]}(\mathbb{Z}, A)=\mathbb{Z} \otimes_{\mathbb{Z}[G]} A
$$

where we are viewing \mathbb{Z} as a (right) $\mathbb{Z}[G]$-module with G acting trivially; see Lemma 23.78 for a proof of the second equality. This means that $\sum a_{g} g \in \mathbb{Z}[G]$ acts on \mathbb{Z} via multiplication by the integer $\sum a_{g}$. This motivates the following definition.

Definition 23.23. Let G be a group. The augmentation map $\varepsilon: \mathbb{Z}[G] \rightarrow \mathbb{Z}$ is the ring homomorphism $\sum a_{g} g \mapsto \sum a_{g} .{ }^{5}$ The augmentation ideal I_{G} is the kernel of the augmentation map; it is a free \mathbb{Z}-module with basis $\{g-1: g \in G\}$.

The augmentation ideal I_{G} is precisely the annihilator of the $\mathbb{Z}[G]$-module \mathbb{Z}; therefore

$$
\mathbb{Z} \otimes_{\mathbb{Z}[G]} A \simeq A / I_{G} A
$$

Definition 23.24. Let A be a G-module. The group of G-coinvariants of A is the G-module

$$
A_{G}:=A / I_{G} A
$$

it is the largest trivial G-module that is a quotient of A.

[^3]We thus have $H_{0}(G, A) \simeq A_{G}$ and $H^{0}(G, A) \simeq A^{G}$.
Definition 23.25. Let G be a group and let A be an abelian group. The abelian group

$$
\operatorname{Ind}^{G}(A):=\mathbb{Z}[G] \otimes_{\mathbb{Z}} A
$$

with G-action defined by $g(z \otimes a)=(g z) \otimes a$ is the induced G-module associated to A.
Lemma 23.26. Let G be a group and A an abelian group. Then $H_{0}\left(G, \operatorname{Ind}^{G}(A)\right) \simeq A$ and $H_{n}\left(G, \operatorname{Ind}^{G}(A)\right)=0$ for all $n \geq 1$.

Proof. Viewing $\mathbb{Z}\left[G^{n}\right]$ as a right $\mathbb{Z}[G]$-module and $\mathbb{Z}[G]$ as a left $\mathbb{Z}[G]$-module, for all $n \geq 1$,

$$
\mathbb{Z}\left[G^{n}\right] \otimes_{\mathbb{Z}[G]}\left(\mathbb{Z}[G] \otimes_{\mathbb{Z}} A\right) \simeq\left(\mathbb{Z}\left[G^{n}\right] \otimes_{\mathbb{Z}[G]} \mathbb{Z}[G]\right) \otimes_{\mathbb{Z}} A \simeq \mathbb{Z}\left[G^{n}\right] \otimes_{\mathbb{Z}} A,
$$

by associativity of the tensor product (and the fact that $M \otimes_{R} R \simeq M$ for any right R module M). This implies that computing $H_{n}\left(G, \operatorname{Ind}^{G}(A)\right)$ using the standard resolution P of \mathbb{Z} by (right) G-modules is the same as computing $H_{n}(\{1\}, A)$ using the resolution P viewed as a resolution of \mathbb{Z} by $\{1\}$-modules (abelian groups). Thus

$$
H_{n}\left(G, \operatorname{Ind}^{G}(A)\right)=\operatorname{Tor}_{n}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \operatorname{Ind}^{G}(A)\right) \simeq \operatorname{Tor}_{n}^{\mathbb{Z}}(\mathbb{Z}, A)=H_{n}(\{1\}, A)
$$

But we can also compute $H_{n}(\{1\}, A)$ using the free resolution $\cdots \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0$, which implies $H_{n}(\{1\}, A)=0$ for $n \geq 1$ and $H_{0}(\{1\}, A) \simeq \mathbb{Z} \otimes A \simeq A$.

Lemma 23.27. Let G be a finite group and A an abelian group. The G-modules $\operatorname{Ind}^{G}(A)$ and $\operatorname{CoInd}^{G}(A)$ are isomorphic.

Proof. We claim that we have a canonical G-module isomorphism given by

$$
\begin{aligned}
\alpha: \operatorname{CoInd}^{G}(A) & \xrightarrow[\longrightarrow]{ } \operatorname{Ind}^{G}(A) \\
\varphi & \mapsto \sum_{g \in G} g^{-1} \otimes \varphi(g) \\
\left(g^{-1} \mapsto a\right) & \leftrightarrow g \otimes a
\end{aligned}
$$

where $\left(g^{-1} \mapsto a\right)(h)=0$ for $h \in G-\left\{g^{-1}\right\}$. It is obvious that α and α^{-1} are inverse homomorphisms of abelian groups, we just need to check that there are morphisms of G modules. For any $h \in G$ and $\varphi \in \operatorname{CoInd}^{G}(A)$ we have

$$
\alpha(h \varphi)=\sum_{g \in G} g^{-1} \otimes(h \varphi)(g)=h \sum_{g \in G}(g h)^{-1} \otimes \varphi(g h)=h \sum_{g \in G} g^{-1} \otimes \varphi(g)=h \alpha(\varphi),
$$

and for any $h \in G$ and $g \otimes a \in \operatorname{Ind}^{G}(A)$ we have

$$
\alpha^{-1}(h(g \otimes a))=\alpha^{-1}(h g \otimes a)=\left((h g)^{-1} \mapsto a\right)=h\left(g^{-1} \mapsto a\right)=h \alpha^{-1}(g \otimes a),
$$

since for $\varphi=\left(g^{-1} \mapsto a\right)$ the identity $(h \varphi)(z)=\varphi(z h)$ implies $h \varphi=\left((h g)^{-1} \mapsto a\right)$.
Corollary 23.28. Let G be a finite group, A be an abelian group, and let B be $\operatorname{Ind}^{G}(A)$ or $\operatorname{CoInd}^{G}(A)$. Then $H_{0}(G, B) \simeq H^{0}(G, B) \simeq A$ and $H_{n}(G, B)=H^{n}(G, B)=0$ for all $n \geq 1$.

Proof. This follows immediately from Lemmas 23.19, 23.26, 23.27.

23.4 Tate cohomology

We now assume that G is a finite group.
Definition 23.29. The norm element of $\mathbb{Z}[G]$ is $N_{G}:=\sum_{g \in G} g$.
Lemma 23.30. Let A be a G-module and let $N_{G}: A \rightarrow A$ be the G-module endomorphism $a \mapsto N_{G} a$. We then have $I_{G} A \subseteq \operatorname{ker} N_{G}$ and $\operatorname{im} N_{G} \subseteq A^{G}$, thus N_{G} induces a morphism $\hat{N}_{G}: A_{G} \rightarrow A^{G}$ of trivial G-modules.
Proof. We have $g N_{G}=N_{G}$ for all $g \in G$, so im $N_{G} \subseteq A^{G}$, and $N_{G}(g-1)=0$ for all $g \in G$, so N_{G} annihilates the augmentation ideal I_{G} and $I_{G} A \subseteq \operatorname{ker} N_{G}$. The lemma follows.

Definition 23.31. Let A be a G-module for a finite group G. For $n \geq 0$ the Tate cohomology and homology groups are defined by

$$
\begin{aligned}
\hat{H}^{n}(G, A) & := \begin{cases}\operatorname{coker} \hat{N}_{G} & \text { for } n=0 \\
H^{n}(G, A) & \text { for } n>0\end{cases}
\end{aligned} \hat{H}_{n}(G, A):=\left\{\begin{array}{ll}
\operatorname{ker} \hat{N}_{G} & \text { for } n=0 \\
H_{n}(G, A) & \text { for } n>0
\end{array}\right\}
$$

Note that $\hat{H}^{0}(G, A)$ is a quotient of $H^{0}(G, A) \simeq A^{G}$ (the largest trivial G-module in A) and $\hat{H}_{0}(G, A)$ is a submodule of $H_{0}(G, A) \simeq A_{G}$ (the largest trivial G-module quotient of A).

Thus any morphism of G-modules induces natural morphisms of Tate cohomology and homology groups in degree $n=0$ (and all other degrees, as we already know). We thus have functors $\hat{H}^{n}(G, \bullet)$ and $\hat{H}_{n}(G, \bullet)$ from the category of G-modules to the category of abelian groups.

Given that every Tate homology group is also a Tate cohomology group, in practice one usually refers only to the groups $\hat{H}^{n}(G, A)$, but the notation $\hat{H}_{n}(G, A)$ can be helpful to highlight symmetry.

Theorem 23.32. Let G be a finite group. Every short exact sequence of G-modules

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

induces a long exact sequence of Tate cohomology groups

$$
\cdots \longrightarrow \hat{H}^{n}(G, A) \xrightarrow{\hat{\alpha}^{n}} \hat{H}^{n}(G, B) \xrightarrow{\hat{\beta}^{n}} \hat{H}^{n}(G, C) \xrightarrow{\hat{\delta}^{n}} \hat{H}^{n+1}(G, A) \longrightarrow \cdots
$$

equivalently, a long exact sequence of Tate homology groups

$$
\cdots \longrightarrow \hat{H}_{n}(G, A) \xrightarrow{\hat{\alpha}_{n}} \hat{H}_{n}(G, B) \xrightarrow{\hat{\beta}_{n}} \hat{H}_{n}(G, C) \xrightarrow{\hat{\delta}_{n}} \hat{H}_{n-1}(G, A) \longrightarrow \cdots
$$

Commutative diagrams of short exact sequences of G-modules induce commutative diagrams of long exact sequences of Tate cohomology groups (equivalently, Tate homology groups).

Proof. It follows from Theorems 23.8 and 23.21 that it is enough to prove exactness at the terms $\hat{H}^{0}(G, \bullet)=\hat{H}_{-1}(G, \bullet)$ and $\hat{H}_{0}(G, \bullet)=\hat{H}^{-1}(G, \bullet)$. We thus consider the diagram

$$
\begin{aligned}
& H_{1}(C, G) \xrightarrow{\delta_{0}} A_{G} \xrightarrow{\alpha_{0}} B_{G} \xrightarrow{\beta_{0}} C_{G} \longrightarrow 0 \\
& \downarrow_{\hat{N}_{G}} \\
& \downarrow_{\hat{N}_{G}} \\
& \\
& 0 \longrightarrow A^{G} \xrightarrow{\alpha^{0}} B^{G} \xrightarrow{\beta^{0}} C^{G} \xrightarrow{\delta^{0}} H^{1}(A, G)
\end{aligned}
$$

whose top and bottom rows are the end and beginning of the long exact sequences in homology and cohomology given by Theorems $\underline{23.21}$ and $\underline{23.8}$, respectively; here we are using $H_{0}(G, \bullet) \simeq \bullet{ }_{G}$ and $H^{0}(G, \bullet) \simeq \bullet^{G}$.

For any $[a] \in A_{G}=A / I_{G} A$ we have $\hat{N}_{G}\left(\alpha_{0}([a])\right)=N_{G} \alpha(a)=\alpha\left(N_{G} a\right)=\alpha^{0}\left(\hat{N}_{G}([a])\right)$, so the first square commutes, as does the second (by the same argument). Applying the snake lemma yields an exact sequence of kernels and cokernels of \hat{N}_{G}

$$
\hat{H}_{0}(G, A) \xrightarrow{\hat{\alpha}_{0}} \hat{H}_{0}(G, B) \xrightarrow{\hat{\beta}_{0}} \hat{H}_{0}(G, C) \xrightarrow{\hat{\delta}} \hat{H}^{0}(G, A) \xrightarrow{\hat{\alpha}^{0}} \hat{H}^{0}(G, B) \xrightarrow{\hat{\beta}^{0}} \hat{H}^{0}(G, C),
$$

where $\hat{\delta}([c])=[a]$ for any $a \in A, b \in B, c \in C$ with $\alpha(a)=N_{G} b$ and $\beta(b)=c \in \operatorname{ker} N_{G}$ (that this uniquely defines the connecting homomorphism $\hat{\delta}$ is part of the snake lemma). Note that $\operatorname{im} \delta_{0}=\operatorname{ker} \alpha_{0}=\operatorname{ker} \hat{\alpha}_{0} \subseteq \operatorname{ker} \hat{N}_{G}$, since α^{0} is injective, so δ_{0} gives a welldefined map $\hat{\delta}_{0}: \hat{H}_{1}(G, C) \rightarrow \hat{H}_{0}(G, A)$ that makes the sequence is exact at $\hat{H}_{0}(G, A)$. Similarly, $\operatorname{im} \hat{N}_{G} \subseteq \operatorname{im} \beta^{0}=\operatorname{ker} \delta^{0}$, since β_{0} is surjective, so δ^{0} induces a well-defined map $\hat{\delta}^{0}: \hat{H}^{0}(G, C) \rightarrow H^{1}(A, G)$ that makes the sequence exact at $\hat{H}^{0}(G, C)$.

For the last statement of the theorem, suppose we have the following commutative diagram of exact sequences of G-modules

By Theorems $\underline{23.21}$ and $\underline{23.8}$, we only need to verify the commutativity of the square

Let $a \in A, b \in B, c \in C$ satisfy $\alpha(a)=N_{G} b$ and $\beta(b)=c \in \operatorname{ker} N_{G}$ as in the definition of $\hat{\delta}$ above, so that $\hat{\delta}([c])=[a]$. Now let $a^{\prime}=\phi(a), b^{\prime}=\psi(b), c=\varphi(c)$. Then

$$
\begin{aligned}
\alpha^{\prime}\left(a^{\prime}\right) & =\alpha^{\prime}(\phi(a))=\psi(\alpha(a))=\psi\left(N_{G} b\right)=N_{G} \psi(b)=N_{G} b^{\prime} \\
\beta^{\prime}\left(b^{\prime}\right) & =\beta^{\prime}(\psi(b))=\varphi(\beta(b))=\varphi(c)=c^{\prime} \in \operatorname{ker} N_{G},
\end{aligned}
$$

where we have used $N_{G} c^{\prime}=N_{G} \varphi(c)=\varphi\left(N_{G} c\right)=\varphi(0)=0$. Thus $\hat{\delta}^{\prime}\left(\left[c^{\prime}\right]=\left[a^{\prime}\right]\right.$ and

$$
\phi^{0}(\hat{\delta}([c]))=\phi^{0}([a])=[\phi(a)]=\left[a^{\prime}\right]=\hat{\delta}^{\prime}\left(\left[c^{\prime}\right]\right)=\hat{\delta}^{\prime}\left([\varphi(c)]=\hat{\delta}^{\prime}\left(\varphi_{0}([c])\right),\right.
$$

so $\phi^{0} \circ \hat{\delta}=\hat{\delta}^{\prime} \circ \varphi_{0}$ as desired.
Theorem 23.32 implies that the family $\hat{H}^{n}(G, \bullet)$ is a cohomological δ-functor, and that the family $\hat{H}_{n}(G, \bullet)$ is a homological δ-functor.

Corollary 23.33. Let G be a finite group. For any G-modules A and B we have

$$
\hat{H}^{n}(G, A \oplus B) \simeq \hat{H}^{n}(G, A) \oplus \hat{H}^{n}(G, B),
$$

for all $n \in \mathbb{Z}$, and the isomorphisms commute with the natural inclusion and projection maps for the direct sums on both sides.

Proof. For $n \neq 0,-1$ this follows from Corollaries 23.15 and 23.22 . For $n=0,-1$ it suffices to note that N_{G} acts on $A \oplus B$ component-wise, and the induced morphism \hat{N}_{G} thus acts on $(A \oplus B)_{G}=A_{G} \oplus B_{G}$ component-wise.

Theorem 23.34. Let G be a finite group and let B be an induced or co-induced G-module associated to some abelian group A. Then $\hat{H}^{n}(G, B)=\hat{H}_{n}(G, B)=0$ for all $n \in \mathbb{Z}$.

Proof. By Corollary 23.28, we only need to show $\hat{H}_{0}(G, B)=\hat{H}^{0}(G, B)=0$, and by Lemma 23.27 it suffices to consider the case $B=\operatorname{Ind}^{G}(A)=\mathbb{Z}[G] \otimes_{\mathbb{Z}} A$. Equivalently, we need to show that $N_{G}: B \rightarrow B$ has kernel $I_{G} B$ and image B^{G}. By definition, the $\mathbb{Z}[G]-$ action on $B=\mathbb{Z}[G] \otimes_{\mathbb{Z}} A$ only affects the factor $\mathbb{Z}[G]$, so this amounts to showing that, as an endomorphism of $\mathbb{Z}[G]$, we have $\operatorname{ker} N_{G}=I_{G}$ and $\operatorname{im} N_{G}=\mathbb{Z}[G]^{G}$. But this is clear: the action of N_{G} on $\mathbb{Z}[G]$ is $\sum_{g \in G} a_{g} g \mapsto\left(\sum_{g \in G} a_{g}\right) N_{G}$. The kernel of this action is the augmentation ideal I_{G}, and its image is $\mathbb{Z}[G]^{G}=\left\{\sum_{g \in G} a_{g} g\right.$: all $a_{g} \in \mathbb{Z}$ equal $\}=N_{G} \mathbb{Z}$.

Remark 23.35. Theorem 23.34 explains a major motivation for using Tate cohomology. It is the minimal modification needed to ensure that induced (and co-induced) G-modules have trivial homology and cohomology in all degrees.

Corollary 23.36. Let G be a finite group and let A be a free $\mathbb{Z}[G]$-module. Then $\hat{H}_{n}(G, A)=$ $\hat{H}^{n}(G, A)=0$ for all $n \in \mathbb{Z}$.

Proof. Let S be a $\mathbb{Z}[G]$-basis for A and let B be the free \mathbb{Z}-module with basis S. Then $A \simeq \operatorname{Ind}^{G}(B)$ and the corollary follows from Theorem $\underline{23.34}$.

23.5 Tate cohomology of cyclic groups

We now assume that G is a cyclic group $\langle g\rangle$ of finite order. In this case the augmentation ideal I_{G} is principal, generated by $g-1$ (as an ideal in the ring $\mathbb{Z}[G]$, not as a \mathbb{Z}-module). For any G-module A we have a free resolution

$$
\begin{equation*}
\cdots \longrightarrow \mathbb{Z}[G] \xrightarrow{N_{G}} \mathbb{Z}[G] \xrightarrow{g-1} \mathbb{Z}[G] \xrightarrow{N_{G}} \mathbb{Z}[G] \xrightarrow{g-1} \mathbb{Z}[G] \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0 . \tag{2}
\end{equation*}
$$

The fact that augmentation ideal $I_{G}=(g-1)$ is principal (because G is cyclic) ensures $\operatorname{im} N_{G}=\operatorname{ker}(g-1)$, making the sequence exact.

The group ring $\mathbb{Z}[G]$ is commutative, since G is abelian, so we need not distinguish left and right $\mathbb{Z}[G]$-modules. For any G-module A we can view $\mathbb{Z}[G] \otimes_{\mathbb{Z}[G]} A$ as a G-module via $g(h \otimes a)=g h \otimes a=h \otimes g a$ and view $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G], A)$ as a G-module via $(g \varphi)(h):=\varphi(g h) .{ }_{-}^{6}$

Theorem 23.37. Let $G=\langle g\rangle$ be a finite cyclic group and let A be a G-module. For all $n \in \mathbb{Z}$ we have $\hat{H}^{2 n}(G, A) \simeq \hat{H}_{2 n-1}(G, A) \simeq \hat{H}^{0}(G, A)$ and $\hat{H}_{2 n}(G, A) \simeq \hat{H}^{2 n-1}(G, A) \simeq \hat{H}_{0}(G, A)$.

Proof. We have canonical G-module isomorphisms $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G], A) \simeq A \simeq \mathbb{Z}[G] \otimes_{\mathbb{Z}[G]} A$ induced by $\varphi \mapsto \varphi(1)$ and $a \mapsto 1 \otimes a$, respectively, and these isomorphisms preserve the multiplication-by- g endomorphisms (that is, $(g \varphi)(1)=g \varphi(1)$ and $1 \otimes g a=g(1 \otimes a)$). Using the free resolution in (2), we can thus compute $H^{n}(G, A)$ using the cochain complex

$$
0 \longrightarrow A \xrightarrow{g-1} A \xrightarrow{N_{G}} A \xrightarrow{g-1} A \xrightarrow{N_{G}} A \cdots,
$$

[^4]and we can compute $H_{n}(G, A)$ using the chain complex
$$
\cdots \longrightarrow A \xrightarrow{N_{G}} A \xrightarrow{g-1} A \xrightarrow{N_{G}} A \xrightarrow{g-1} A \longrightarrow 0 .
$$

We now observe that $A^{G}=\operatorname{ker}(g-1)$, so for all $n \geq 1$ we have

$$
H^{2 n}(G, A)=H_{2 n-1}(G, A)=\operatorname{ker}(g-1) / \operatorname{im} N_{G}=\operatorname{coker} \hat{N}_{G}=\hat{H}^{0}(G, A),
$$

so $\hat{H}^{2 n}(G, A)=\hat{H}_{2 n-1}(G, A)=\hat{H}^{0}(G, A)$ for all $n \in \mathbb{Z}$, since $\hat{H}^{-2 n}(G, A)=\hat{H}_{2 n-1}(G, A)$ and $\hat{H}_{-2 n+1}=\hat{H}^{2 n}$ for all $n \geq 0$.

We also note that $\operatorname{im}(g-1)=I_{G} A$, so for all $n \geq 1$ we have

$$
H_{2 n}(G, A)=H^{2 n-1}(G, A)=\operatorname{ker} N_{G} / \operatorname{im}(g-1)=\operatorname{ker} \hat{N}_{G}=\hat{H}_{0}(G, A),
$$

so $\hat{H}_{2 n}(G, A)=\hat{H}^{2 n-1}(G, A)=\hat{H}_{0}(G, A)$ for all $n \in \mathbb{Z}$, since $\hat{H}_{-2 n}(G, A)=\hat{H}^{2 n-1}(G, A)$ and $\hat{H}^{-2 n+1}=\hat{H}_{2 n}$ for all $n \geq 0$.

It follows from Theorem 23.37 that when G is a finite cyclic group, all of the Tate homology/cohomology groups are determined by $\hat{H}_{0}(G, A)=\operatorname{ker} \hat{N}_{G}=\operatorname{ker} N_{G} / \operatorname{im}(g-1)$ and $\hat{H}^{0}(G, A)=$ coker $\hat{N}_{G}=\operatorname{ker}(g-1) / \operatorname{im} N_{G}$. This motivates the following definition.

Definition 23.38. Let G be a finite cyclic group and let A be a G-module. We define $h^{n}(A):=h^{n}(G, A):=\# \hat{H}^{n}(G, A)$ and $h_{n}(A):=h_{n}(G, A):=\# \hat{H}_{n}(G, A)$. Whenever $h^{0}(A)$ and $h_{0}(A)$ are both finite, we also define the Herbrand quotient $h(A):=h^{0}(A) / h_{0}(A) \in \mathbb{Q}$.

Remark 23.39. Some authors define the Herbrand quotient via $h(A):=h^{0}(A) / h^{1}(A)$ or $h(A):=h^{0}(A) / h^{-1}(A)$ or $h(A):=h^{2}(A) / h^{1}(A)$, but Theorem $\underline{23.37}$ implies that these definitions are all the same as ours. The notation $q(A)$ is often used instead of $h(A)$, and one occasionally sees the Herbrand quotient defined as the reciprocal of our definition (as in [2], for example), but this is less standard.

Corollary 23.40. Let G be a finite cyclic group. Given an exact sequence of G-modules

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

we have a corresponding exact hexagon

Proof. This follows immediately from Theorems $\underline{23.32}$ and $\underline{23.37}$.
Corollary 23.41. Let G be a finite cyclic group. For any exact sequence of G-modules

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0,
$$

if any two of $h(A), h(B), h(C)$ are defined then so is the third and $h(B)=h(A) h(C)$.

Proof. Using the exact hexagon given by Corollary $\underline{23.40}$ we can compute the cardinality

$$
h^{0}(A)=\# \hat{H}^{0}(G, A)=\# \operatorname{ker} \hat{\alpha}^{0} \# \operatorname{im} \hat{\alpha}^{0}=\# \operatorname{ker} \alpha^{0} \# \operatorname{ker} \beta^{0}
$$

Applying a similar calculation to $\hat{H}^{0}(G, C)$ and $\hat{H}^{1}(G, B)$ yields

$$
h^{0}(A) h^{0}(C) h_{0}(B)=\# \operatorname{ker} \hat{\alpha}^{0} \# \operatorname{ker} \hat{\beta}^{0} \# \operatorname{ker} \hat{\delta}^{0} \# \operatorname{ker} \hat{\alpha}_{0} \# \operatorname{ker} \hat{\beta}_{0} \# \operatorname{ker} \hat{\delta}_{0}
$$

Doing the same for $\hat{H}^{0}(G, B), \hat{H}_{0}(G, A), \hat{H}_{0}(G, C)$ yields
$h^{0}(B) h_{0}(A) h_{0}(C)=\# \operatorname{ker} \hat{\beta}^{0} \# \operatorname{ker} \hat{\delta}^{0} \# \operatorname{ker} \hat{\alpha}_{0} \# \operatorname{ker} \hat{\beta}_{0} \# \operatorname{ker} \hat{\delta}_{0} \# \operatorname{ker} \hat{\alpha}^{0}=h^{0}(A) h^{0}(C) h_{0}(B)$.
If any two of $h(A), h(B), h(C)$ are defined then at least four of the groups in the exact hexagon are finite, and the remaining two are non-adjacent, but these two must then also be finite. In this case we can rearrange the identity above to obtain $h(B)=h(A) h(C)$.

Corollary 23.42. Let G be a finite cyclic group, and let A and B be G-modules. If $h(A)$ and $h(B)$ are defined then so is $h(A \oplus B)=h(A) h(B)$.

Proof. Apply Corollary 23.41 to the split exact sequence $0 \rightarrow A \rightarrow A \oplus B \rightarrow B \rightarrow 0$.
Lemma 23.43. Let $G=\langle g\rangle$ be a finite cyclic group. If A is an induced or finite G-module then $h(A)=1$.

Proof. If A is an induced G-module then $h_{0}(A)=h^{0}(A)=h(A)=1$, by Theorem 23.34. If A is finite, then the exact sequence

$$
0 \longrightarrow A^{G} \longrightarrow A \xrightarrow{g-1} A \longrightarrow A_{G} \longrightarrow 0
$$

implies $\# A^{G}=\# \operatorname{ker}(g-1)=\# \operatorname{coker}(g-1)=\# A_{G}$, and therefore

$$
h_{0}(A)=\# \operatorname{ker} \hat{N}_{G}=\# \operatorname{coker} \hat{N}_{G}=h^{0}(A)
$$

so $h(A)=h^{0}(A) / h_{0}(A)=1$.
Corollary 23.44. Let G be a finite cyclic group and let A be a G-module that is a finitely generated abelian group. Then $h(A)=h\left(A / A_{\text {tor }}\right)$ whenever either is defined.

Proof. Apply Corollary $\underline{23.41}$ and Lemma $\underline{23.43}$ to $0 \rightarrow A_{\text {tor }} \rightarrow A \rightarrow A / A_{\text {tor }} \rightarrow 0$.
Remark 23.45. The hypothesis of Corollary 23.44 actually guarantees that $h(A)$ is defined, but we won't prove this here.

Corollary 23.46. Let G be a finite cyclic group and let A be a trivial G-module that is a finitely generated abelian group. Then $h(A)=(\# G)^{r}$, where r is the rank of A.

Proof. We have $A / A_{\text {tor }} \simeq \mathbb{Z}^{r}$, where \mathbb{Z} is a trivial G-module. Then $\mathbb{Z}_{G}=\mathbb{Z}=\mathbb{Z}^{G}$, and $\hat{N}_{G}: \mathbb{Z}_{G} \rightarrow \mathbb{Z}^{G}$ is multiplication by $\# G$, so $h(\mathbb{Z})=\#$ coker $\hat{N}_{G} / \#$ ker $\hat{N}_{G}=\# G$. Now apply Corollaries $\underline{23.42}$ and $\underline{23.44}$.

Lemma 23.47. Let G be a finite cyclic group and let $\alpha: A \rightarrow B$ be a morphism of G modules with finite kernel and cokernel. If either $h(A)$ or $h(B)$ is defined then $h(A)=h(B)$.

Proof. Applying Corollary $\underline{23.41}$ to the exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker} \alpha \rightarrow A \rightarrow \operatorname{im} \alpha \rightarrow 0 \\
& 0 \rightarrow \operatorname{im} \alpha \rightarrow B \rightarrow \operatorname{coker} \alpha \rightarrow 0
\end{aligned}
$$

yields $h(A)=h(\operatorname{ker} \alpha) h(\operatorname{im} \alpha)=h(\operatorname{im} \alpha)=h(\operatorname{im} \alpha) h(\operatorname{coker} \alpha)=h(B)$, by Lemma 23.43, since $\operatorname{ker} \alpha$ and coker α are finite. The lemma follows.

Corollary 23.48. Let G be a finite cyclic group and let A be a G-module containing a sub- G-module B of finite index. Then $h(A)=h(B)$ whenever either is defined.

Proof. Apply Lemma $\underline{23.47}$ to the inclusion $B \rightarrow A$.

23.6 A little homological algebra

In an effort to keep these notes self-contained, in this final section we present proofs of the homological results that were used above. For the sake of concreteness we restrict our attention to modules, but everything in this section generalizes to suitable abelian categories. We use R to denote an arbitrary (not necessarily commutative) ring (in previous section R was the group ring $\mathbb{Z}[G]$). Statements that use the term R-module without qualification are understood to apply in both the category of left R-modules and the category of right R-modules.

23.6.1 Complexes

Definition 23.49. A chain complex C is a sequence of R-module morphisms

$$
\cdots \xrightarrow{d_{2}} C_{2} \xrightarrow{d_{1}} C_{1} \xrightarrow{d_{0}} C_{0} \longrightarrow 0
$$

with $d_{n} \circ d_{n+1}=0$; the d_{n} are boundary maps. The nth homology group of C is the R-module $H_{n}(C):=Z_{n}(C) / B_{n}(C)$, where $Z_{n}(C):=\operatorname{ker} d_{n-1}$ and $B_{n}(C):=\operatorname{im} d_{n}$ are the R-modules of cycles and boundaries, respectively; for $n<0$ we define $C_{n}=0$ and d_{n} is the zero map.

A morphism of chain complexes $f: C \rightarrow D$ is a sequence of R-module morphisms $f_{n}: C_{n} \rightarrow D_{n}$ that commute with boundary maps (so $\left.f_{n} \circ d_{n}=d_{n} \circ f_{n+1}\right) .{ }_{-}^{7}$ Such a morphism necessarily maps cycles to cycles and boundaries to boundaries, yielding natural morphisms $H_{n}(f): H_{n}(C) \rightarrow H_{n}(D)$ of homology groups. ${ }^{8}$ We thus have a family of functors $H_{n}(\bullet)$ from the category of chain complexes to the category of abelian groups. The category of chain complexes has kernels and cokernels (and thus exact sequences). The set $\operatorname{Hom}(C, D)$ of morphisms of chain complexes $C \rightarrow D$ is an abelian group under addition: $(f+g)_{n}=f_{n}+g_{n}$.

The category of chain complexes of R-modules contains direct sums and direct products: if A and B are chain complexes of R-modules then $(A \oplus B)_{n}:=A_{n} \oplus B_{n}$ and the boundary maps $d_{n}:(A \oplus B)_{n+1} \rightarrow(A \oplus B)_{n}$ are defined component-wise: $d_{n}(a \oplus b):=d_{n}(a) \oplus d_{n}(b)$. Because the boundary maps are defined component-wise, the kernel of the boundary map of

[^5]a direct sum is the direct sum of the kernels of the boundary maps on the components, and similarly for images. It follows that $H_{n}(A \oplus B) \simeq H_{n}(A) \oplus H_{n}(B)$, and this isomorphism commutes with the natural inclusion and projection maps in to and out of the direct sums on both sides. In other words, $H_{n}(\bullet)$ is an additive functor (see Definition 23.16). This extends to arbitrary (possibly infinite) direct sums, and also to arbitrary direct products, although we will only be concerned with finite direct sums/products. ${ }_{-}^{9}$

Theorem 23.50. Associated to each short exact sequence of chain complexes

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

is a long exact sequence of homology groups

$$
\cdots \longrightarrow H_{n+1}(A) \xrightarrow{H_{n+1}(\alpha)} H_{n+1}(B) \xrightarrow{H_{n+1}(\beta)} H_{n+1}(C) \xrightarrow{\delta_{n}} H_{n}(A) \xrightarrow{H_{n}(\alpha)} H_{n}(B) \xrightarrow{H_{n}(\beta)} H_{n}(C) \longrightarrow \cdots
$$

and this association maps morphisms of short exact sequences to morphisms of long exact sequences. In other words, the family of functors $H_{n}(\bullet)$ is a homological δ-functor.

For $n<0$ we have $H_{n}(\bullet)=0$, by definition, so this sequence ends at $H_{0}(C) \rightarrow 0$.
Proof. For any chain complex C, let $Y_{n}(C):=C_{n} / B_{n}(C)$. Applying the snake lemma to

(where $\alpha_{n}, \beta_{n}, d_{n}$ denote obviously induced maps) yields the exact sequence

$$
H_{n+1}(A) \xrightarrow{\alpha_{n+1}} H_{n+1}(B) \xrightarrow{\beta_{n+1}} H_{n+1}(C) \xrightarrow{\delta_{n}} H_{n}(A) \xrightarrow{\alpha_{n}} H_{n}(B) \xrightarrow{\beta_{n}} H_{n}(G) .
$$

The verification of the commutativity of diagrams of long exact sequences of homology groups associated to commutative diagrams of short exact sequences of chain complexes is as in the proof of Theorem 23.8, mutatis mutandi.

Definition 23.51. Two morphisms $f, g: C \rightarrow D$ of chain complexes are homotopic if there exist morphisms $h_{n}: C_{n} \rightarrow D_{n+1}$ such that $f_{n}-g_{n}=d_{n} \circ h_{n}+h_{n-1} \circ d_{n-1}$ for all $n \geq 0$ (where $h_{-1}:=0$); this defines an equivalence relation $f \sim g$, since (a) $f \sim f$ (take $h=0$), (b) if $f \sim g$ via h then $g \sim f$ via $-h$, and (c) if $f_{1} \sim f_{2}$ via h_{1} and $f_{2} \sim f_{3}$ via h_{2} then $f_{1} \sim f_{3}$ via $h_{1}+h_{2}$.

Lemma 23.52. Homotopic morphisms of chain complexes $f, g: C \rightarrow D$ induce they some morphisms of homology groups $H_{n}(C) \rightarrow H_{n}(D)$; we have $H_{n}(f)=H_{n}(g)$ for all $n \geq 0$.

Proof. Let $[z] \in H_{n}(C)=Z_{n}(C) / B_{n}(C)$ denote the homology class $z \in Z_{n}(C)$. We have

$$
f_{n}(z)-g_{n}(z)=d_{n}\left(h_{n}(z)\right)+h_{n-1}\left(d_{n-1}(z)\right)=d_{n}\left(h_{n}(z)\right)+0 \in B_{n}(D),
$$

thus $H_{n}(f)([z])-H_{n}(g)([z])=0$. It follows that $H_{n}(f)=H_{n}(g)$ for all $n \geq 0$.

[^6]Definition 23.53. A cochain complex C is a sequence of R-module morphisms

$$
0 \longrightarrow C^{0} \xrightarrow{d^{0}} C^{1} \xrightarrow{d^{1}} C^{2} \xrightarrow{d^{2}} \cdots
$$

with $d^{n+1} \circ d^{n}=0$. The nth cohomology group of C is the R-module $H^{n}(C):=Z^{n}(C) / B^{n}(C)$, where $Z^{n}(C):=\operatorname{ker} d^{n}$ and $B^{n}(C):=\operatorname{im} d^{n-1}$ are the R-modules of cocycles and coboundaries;; for $n<0$ we define $C^{n}=0$ and d^{n} is the zero map. A morphism of cochain complexes $f: C \rightarrow D$ consists of R-module morphisms $f^{n}: C^{n} \rightarrow D^{n}$ that commute with coboundary maps, yielding natural morphisms $H^{n}(f): H^{n}(C) \rightarrow H^{n}(D)$ and a functors $H^{n}(\bullet)$ from the category of cochain complexes to the category of abelian groups. Cochain complexes form a category with kernels and cokernels, as well as direct sums and direct products (coboundary maps are defined component-wise). Like $H_{n}(\bullet)$, the functor $H^{n}(\bullet)$ is additive and commutes with arbitrary direct sums and direct products.

The set $\operatorname{Hom}(C, D)$ of morphisms of cochain complexes $C \rightarrow D$ forms an abelian group under addition: $(f+g)^{n}=f^{n}+g^{n}$. Morphisms of cochain complexes $f, g: C \rightarrow D$ are homotopic if there are morphisms $h^{n}: C^{n+1} \rightarrow D^{n}$ such that $f^{n}-g^{n}=h^{n} \circ d^{n}+d^{n-1} \circ h^{n-1}$ for all $n \geq 0$ (where $h^{-1}:=0$); this defines an equivalence relation $f \sim g .{ }_{-}^{10}$

Theorem 23.54. Associated to every short exact sequence of cochain complexes

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

is a long exact sequence of homology groups
$\cdots \longrightarrow H^{n}(A) \xrightarrow{H^{n}(\alpha)} H^{n}(B) \xrightarrow{H^{n}(\beta)} H^{n}(C) \xrightarrow{\delta^{n}} H^{n+1}(A) \xrightarrow{H^{n+1}(\alpha)} H^{n+1}(B) \xrightarrow{H^{n+1}(\beta)} H^{n+1}(C) \longrightarrow \cdots$
and this association maps morphisms of short exact sequences ot morphisms of long exact sequences, that is, the family of functors $H^{n}(\bullet)$ is a cohomological δ-functor.

For $n<0$ we have $H_{n}(\bullet)=0$, by definition, so this sequence begins with $0 \rightarrow H^{0}(A)$.
Proof. Adapt the proof of Theorem 23.50 .
Lemma 23.55. Homotopic morphisms of cochain complexes $f, g: C \rightarrow D$ induce they same morphisms of cohomology groups $H^{n}(C) \rightarrow H^{n}(D)$; we have $H^{n}(f)=H^{n}(g)$ for all $n \geq 0$.

Proof. Adapt the proof of Lemma 23.52.

23.6.2 Projective resolutions

Recall that a projective R-module is an R-module P with the property that if $\pi: M \rightarrow N$ is a surjective morphism of R-modules, every R-module morphism $\varphi: P \rightarrow N$ factors through π :

Free modules are projective, since we can then fix an R-basis $\left\{e_{i}\right\}$ for P and define $\phi\left(e_{i}\right)$ by picking any element of $\pi^{-1}\left(\varphi\left(e_{i}\right)\right)$ (note that the ϕ so constructed is in no way canonical).

[^7]Definition 23.56. Let M be an R-module. A projective resolution of M is an exact chain complex P with $P_{0}=M$ and P_{n} projective for all $n>0$.

Every R-module has a projective resolution, since (as noted earlier), every R-module M has a free resolution (we can always construct $d_{0}: P_{1} \rightarrow M$ by taking P_{1} to be free module with basis M, then similarly construct $d_{1}: P_{2} \rightarrow \operatorname{ker} d_{0}$, and so on).

Proposition 23.57. Let M and N be R-modules with projective resolutions P and Q, respectively. Every R-module morphism $\alpha_{0}: M \rightarrow N$ extends to a morphism $\alpha: P \rightarrow Q$ of chain complexes that is unique up to homotopy.

Proof. We inductively construct α_{n} for $n \geq 1$ (the base case is given). Suppose we have constructed a commutative diagram of exact sequences

Then $d_{n-1} \circ \alpha_{n} \circ d_{n}=\alpha_{n-1} \circ d_{n-1} \circ d_{n}=0$, so $\operatorname{im}\left(\alpha_{n} \circ d_{n}\right) \subseteq \operatorname{ker} d_{n-1}=\operatorname{im} d_{n}$. We now define $\alpha_{n+1}: P_{n+1} \rightarrow Q_{n+1}$ as a pullback of the morphism $\alpha_{n} \circ d_{n}: P_{n+1} \rightarrow \operatorname{im} d_{n}$ along the surjection $d_{n}: Q_{n+1} \rightarrow \operatorname{im} d_{n}$ such that $d_{n} \circ \alpha_{n+1}=\alpha_{n} \circ d_{n}$.

Now suppose $\beta: P \rightarrow Q$ is another morphism of projective resolutions with $\beta_{0}=\alpha_{0}$, and let $\gamma=\alpha-\beta$. To show that α and β are homotopic it suffices to construct maps $h_{n}: P_{n} \rightarrow Q_{n+1}$ such that $d_{n} \circ h_{n}=\gamma_{n}-h_{n-1} \circ d_{n-1}\left(\right.$ where $\left.h_{-1}=d_{-1}=0\right)$. We have $\gamma_{0}=\alpha_{0}-\beta_{0}=0$, so let $h_{0}:=0$ and inductively assume $d_{n} \circ h_{n}=\gamma_{n}-h_{n-1} \circ d_{n-1}$. Then
$d_{n} \circ\left(\gamma_{n+1}-h_{n} \circ d_{n}\right)=d_{n} \circ \gamma_{n+1}-\left(d_{n} \circ h_{n}\right) \circ d_{n}=\gamma_{n} \circ d_{n}-\left(\gamma_{n}-h_{n-1} \circ d_{n-1}\right) \circ d_{n}=0$,
so $\operatorname{im}\left(\gamma_{n+1}-h_{n} \circ d_{n}\right) \subseteq B_{n+1}(Q)$. The R-module P_{n+1} is projective, so we can pullback the morphism $\left(\gamma_{n+1}-h_{n} \circ d_{n}\right): P_{n+1} \rightarrow B_{n+1}(Q)$ along the surjection $d_{n+1}: Q_{n+1} \rightarrow B_{n+1}(Q)$ to obtain h_{n+1} satisfying $d_{n+1} \circ h_{n+1}=\gamma_{n+1}-h_{n} \circ d_{n}$ as desired.

23.6.3 Hom and Tensor

If M and N are R-modules, the set $\operatorname{Hom}_{R}(M, N)$ of R-module morphisms $M \rightarrow N$ forms an abelian group under pointwise addition (so $(f+g)(m):=f(m)+g(m)$) that we may view as a \mathbb{Z}-module. For each R-module A we have a contravariant functor $\operatorname{Hom}_{R}(\bullet, A)$ that sends each R-module M to the \mathbb{Z}-module

$$
M^{*}:=\operatorname{Hom}_{R}(M, A)
$$

and each R-module morphism $\varphi: M \rightarrow N$ to the \mathbb{Z}-module morphism

$$
\begin{aligned}
\varphi^{*}: \operatorname{Hom}_{R}(N, A) & \rightarrow \operatorname{Hom}_{R}(M, A) \\
f & \mapsto f \circ \varphi .
\end{aligned}
$$

To check this, note that

$$
\varphi^{*}(f+g)=(f+g) \circ \varphi=f \circ \varphi+g \circ \varphi=\varphi^{*}(f)+\varphi^{*}(g),
$$

so φ^{*} is a morphism of $\mathbb{Z}=$ modules (homomorphism of abelian groups), and

$$
\begin{aligned}
\operatorname{id}_{M}^{*} & =\left(f \mapsto f \circ \operatorname{id}_{M}\right)=(f \mapsto f)=\operatorname{id}_{M^{*}}, \\
(\phi \circ \varphi)^{*} & =(f \mapsto f \circ \phi \circ \varphi)=(f \mapsto f \circ \varphi) \circ(f \mapsto f \circ \phi)=\varphi^{*} \circ \phi^{*},
\end{aligned}
$$

thus $\operatorname{Hom}_{R}(\bullet, A)$ is a contravariant functor.
Lemma 23.58. Let $\varphi: M \rightarrow N$ and $\phi: N \rightarrow P$ be morphisms of R-modules. The sequence

$$
M \xrightarrow{\varphi} N \xrightarrow{\phi} P \longrightarrow 0
$$

is exact if and only if for every R-module A the sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}(P, A) \xrightarrow{\phi^{*}} \operatorname{Hom}_{R}(N, A) \xrightarrow{\varphi^{*}} \operatorname{Hom}_{R}(M, A)
$$

is exact.
Proof. (\Rightarrow) : If $\phi^{*}(f)=f \circ \phi=0$ then $f=0$, since ϕ is surjective, so ϕ^{*} is injective. We have $\varphi^{*} \circ \phi^{*}=(\varphi \circ \phi)^{*}=0^{*}=0$, so $\operatorname{im} \phi^{*} \subseteq \operatorname{ker} \varphi^{*}$. Let $\phi^{-1}: P \xrightarrow{\sim} N / \operatorname{ker} \phi$. Each $g \in \operatorname{ker} \varphi^{*}$ vanishes on $\operatorname{im} \varphi=\operatorname{ker} \phi$ inducing $\bar{g}: N / \operatorname{ker} \phi \rightarrow A$ with $g=\bar{g} \circ \phi^{-1} \circ \phi \in \operatorname{im} \phi^{*}$.
$(\Leftarrow):$ For $A=P / \operatorname{im} \phi$ and $\pi: P \rightarrow P / \operatorname{im} \phi$ the projective map, we have $\phi^{*}(\pi)=0$ and therefore $\pi=0$, since ϕ^{*} is injective, so $P=\operatorname{im} \phi$ and ϕ is surjective. For $A=P$ we have $0=\left(\varphi^{*} \circ \phi^{*}\right)\left(\operatorname{id}_{P}\right)=\operatorname{id}_{P} \circ \phi \circ \varphi=\phi \circ \varphi$, $\operatorname{so} \operatorname{im} \varphi \subseteq \operatorname{ker} \phi$. For $A=N / \operatorname{im} \varphi$, and $\pi: N \rightarrow N / \operatorname{im} \varphi$ the projection map, we have $\pi \in \operatorname{ker} \varphi^{*}=\operatorname{im} \phi^{*}$, thus $\pi=\phi^{*}(\sigma)=\sigma \circ \phi$ for some $\sigma \in \operatorname{Hom}(P, A)$. Now $\pi(\operatorname{ker} \phi)=\sigma(\phi(\operatorname{ker} \phi))=0$ implies $\operatorname{ker} \phi \subseteq \operatorname{ker} \pi=\operatorname{im} \varphi$.

Definition 23.59. A sequence of morphisms $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is left exact if it is exact at A and $B(\operatorname{ker} f=0$ and $\operatorname{im} f=\operatorname{ker} g)$, and right exact if it is exact at B and C ($\operatorname{im} f=\operatorname{ker} g$ and $\operatorname{im} g=C$). A functor that takes exact sequences to left (resp. right) exact sequences is said to be left exact (resp. right exact).

Corollary 23.60. For any R-module A the functor $\operatorname{Hom}_{R}(\bullet, A)$ is left exact.
Proof. This follows immediately from the forward implication in Lemma 23.58.
Corollary 23.61. For any R-module A, the functor $\operatorname{Hom}_{R}(\bullet, A)$ is an additive functor.
Proof. See [6, Lemma 12.7.2] for a proof that this follows from left exactness; it is easy to check directly in any case.

Remark 23.62. Corollary 23.61 implies that $\operatorname{Hom}_{R}(\bullet, A)$ commutes with finite direct sums, but it does not commute with infinite direct sums (direct products are fine).

Remark 23.63. The covariant functor $\operatorname{Hom}_{R}(A, \bullet)$ that sends $\varphi: M \rightarrow N$ to $(f \mapsto \varphi \circ f)$ is also left exact.

If M is a right R-module and A is a left R-module, the tensor product $M \otimes_{R} A$ is an abelian group consisting of sums of pure tensors $m \otimes a$ with $m \in M$ and $a \in A$ satisfying:

- $m \otimes(a+b)=m \otimes b+m \otimes b ;$
- $(m+n) \otimes a=m \otimes a+m \otimes a ;$
- $m r \otimes a=m \otimes r a$.

For each left R-module A we have a covariant functor $\bullet \otimes_{R} A$ that sends each right R module M to the \mathbb{Z}-module

$$
M_{*}:=M \otimes_{R} A
$$

and each right R-module morphism $\varphi: M \rightarrow N$ to the \mathbb{Z}-module morphism

$$
\begin{aligned}
\varphi_{*}: M \otimes_{R} A & \rightarrow N \otimes_{R} A \\
m \otimes a & \mapsto \varphi(m) \otimes a
\end{aligned}
$$

For each left R-module A we also have a covariant functor $\operatorname{Hom}_{\mathbb{Z}}(A, \bullet)$ that sends each \mathbb{Z}-module B to the right R-module $\operatorname{Hom}_{\mathbb{Z}}(A, B)$ with $\varphi(a) r:=\varphi(r a)$ and each \mathbb{Z}-module morphism $\varphi: B \rightarrow C$ to the right R-module morphism $\operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(A, C)$ defined by $f \mapsto \varphi \circ f$. Note that $(\varphi r s)(a)=\varphi(r s a)=(\varphi r)(s a)=((\varphi r) s)(a)$, so $\operatorname{Hom}_{\mathbb{Z}}(A, B)$ is indeed a right R-module.

For any abelian group B there is a natural isomorphism of \mathbb{Z}-modules

$$
\begin{align*}
& \operatorname{Hom}_{\mathbb{Z}}\left(M \otimes_{R} A, B\right) \xrightarrow{\sim} \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{\mathbb{Z}}(A, B)\right) \tag{3}\\
& \varphi \mapsto(m \mapsto(a \mapsto \varphi(m \otimes a))) \\
& (m \otimes a \mapsto \phi(m)(a) \leftrightarrow \phi
\end{align*}
$$

The functors $\bullet \otimes_{R} A$ and $\operatorname{Hom}_{\mathbb{Z}}(A, \bullet)$ are thus adjoint functors. One can view (3) as a universal property that determines $M \otimes_{R} A$ up to a unique isomorphism.

Lemma 23.64. For any left R-module the functor $\bullet \otimes_{R} A$ is right exact.
Proof. Let

$$
0 \longrightarrow M \xrightarrow{\varphi} N \xrightarrow{\phi} P \longrightarrow 0,
$$

be an exact sequence of right R-modules. For any $\sum_{i} p_{i} \otimes a_{i} \in P_{*}$ we can pick $n_{i} \in N$ such that $\phi\left(n_{i}\right)=p_{i}$ and then $\phi\left(\sum_{i} n_{i} \otimes a\right)=\sum_{i} p_{i} \otimes a$, thus ϕ_{*} is surjective. For any $\sum_{i} m_{i} \otimes a_{i} \in M \otimes_{R} A$ we have $\phi_{*}\left(\varphi_{*}\left(\sum_{i} m_{i} \otimes a_{i}\right)\right)=\sum_{i} \phi\left(\varphi\left(m_{i}\right)\right) \otimes a_{i}=\sum_{i} 0 \otimes a_{i}=0$, so $\operatorname{im} \varphi_{*} \subseteq \operatorname{ker} \phi_{*}$. To prove $\operatorname{im} \varphi_{*}=\operatorname{ker} \phi_{*}$ it suffices to show that $N_{*} / \operatorname{im} \varphi_{*} \simeq P_{*}$, since the surjectivity of ϕ_{*} implies $N^{*} / \operatorname{ker} \varphi_{*} \simeq P_{*}$. For every abelian group B the sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(P, \operatorname{Hom}_{\mathbb{Z}}(A, B)\right) \xrightarrow{\phi^{*}} \operatorname{Hom}_{R}\left(N, \operatorname{Hom}_{\mathbb{Z}}(A, B)\right) \xrightarrow{\phi^{*}} \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{\mathbb{Z}}(A, B)\right)
$$

is left exact (by applying Corollary 23.60 to the right R-module $\operatorname{Hom}_{\mathbb{Z}}(A, B)$; note that the corollary applies to both left and right R-modules). Equivalently, by (3),

$$
0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(P_{*}, B\right) \xrightarrow{\phi_{*}^{*}} \operatorname{Hom}_{\mathbb{Z}}\left(N_{*}, B\right) \xrightarrow{\varphi_{*}^{*}} \operatorname{Hom}_{\mathbb{Z}}\left(M_{*}, B\right),
$$

Applying Lemma 23.58 and the surjectivity of ϕ_{*} yields the desired right exact sequence

$$
M_{*} \xrightarrow{\varphi_{*}} N_{*} \xrightarrow{\phi} P_{*} \longrightarrow 0 .
$$

Corollary 23.65. For any left R-module A, the functor $\bullet \otimes_{R} A$ is an additive functor.
Proof. See [6, Lemma 12.7.2] for a proof that this follows from right exactness; it is easy to check directly in any case.

Remark 23.66. Corollary $\underline{23.65}$ implies that $\bullet \otimes_{R} A$ commutes with finite direct sums, and in fact it commutes with arbitrary direct sums (but not direct products).

Remark 23.67. For any right R-module A the functor $A \otimes_{R} \bullet$ is also right exact.
If A is an R-module and C is a chain complex of R-modules, applying the functor $\operatorname{Hom}(\bullet, A)$ to the R-modules C_{n} and boundary maps $d_{n}: C_{n+1} \rightarrow C_{n}$ yields a cochain complex C^{*} of \mathbb{Z}-modules $C^{n}:=C_{n}^{*}$ and coboundary maps $d^{n}:=d_{n}^{*},{ }_{1}^{11}$ and morphisms $f: C \rightarrow D$ of chain complexes become morphisms $f^{*}: C^{*} \rightarrow D^{*}$ of cochain complexes. We thus also have a contravariant left exact functor from the category of chain complexes to the category of cochain complexes.

Proposition 23.68. Let A be an R-module and let \bullet denote the application of the functor $\operatorname{Hom}(\bullet, A)$. Let $f, g: C \rightarrow D$ be homotopic morphisms of chain complexes of R-modules. Then $f^{*}, g^{*}: D^{*} \rightarrow C^{*}$ are homotopic morphisms of cochain complexes of \mathbb{Z}-modules.

Proof. The morphisms f and g are homotopic, so their exist morphisms $h_{n}: C_{n} \rightarrow D_{n+1}$ such that $f_{n}-g_{n}=d_{n} \circ h_{n}+h_{n-1} \circ d_{n-1}$ for all $n \geq 0$. Applying the contravariant functor $\operatorname{Hom}(\bullet, A)$ yields

$$
f_{n}^{*}-g_{n}^{*}=h_{n}^{*} \circ d_{n}^{*}+d_{n-1}^{*} \circ h_{n-1}^{*},
$$

where $h_{n}^{*}: D_{n+1} \rightarrow C_{n}$ for all $n \geq 0$, with $h_{-1}=0$. Thus f^{*} and g^{*} are homotopic.
Proposition 23.69. Let A be a left R-module and let \bullet_{*} denote the application of the functor $\bullet \otimes_{R} A$. Let $f, g: C \rightarrow D$ be homotopic morphisms of chain complexes of right R modules. Then $f_{*}, g_{*}: C_{*} \rightarrow D_{*}$ are homotopic morphisms of chain complexes of \mathbb{Z}-modules.

Proof. The morphisms f and g are homotopic, so their exist morphisms $h_{n}: C_{n} \rightarrow D_{n+1}$ such that $f_{n}-g_{n}=d_{n} \circ h_{n}+h_{n-1} \circ d_{n-1}$ for all $n \geq 0$. Applying the covariant functor - $\otimes_{R} A$ yields

$$
f_{n *}-g_{n *}=d_{n *} \circ h_{n *}+h_{n-1 *} \circ d_{n-1 *}
$$

where $h_{n *}: C_{n+1} \rightarrow D_{n}$ for all $n \geq 0$, with $h_{-1}=0$. Thus f_{*} and g_{*} are homotopic.

23.6.4 Ext and Tor functors

Definition 23.70. Let P be a projective resolution of an R-module M. The truncation of P is the chain complex \bar{P} with $\bar{P}_{0}:=P_{1}$ and $\bar{P}_{n}:=P_{n+1}$ for all $n>0$ (which need not be exact at $\left.\bar{P}_{0}\right) \cdot \underline{12}$ Any morphism of projective resolutions $f: P \rightarrow Q$ induces a morphism $\bar{f}: \bar{P} \rightarrow \bar{Q}$ of their truncations with $\bar{f}_{n}:=f_{n+1}$.

Theorem 23.71. Let P, Q be projective resolutions of an R-module M, let A be an R module, and let \bullet_{A}^{*} denote application of $\operatorname{Hom}_{R}(\bullet, A)$. Then $H^{n}\left(\bar{P}_{A}^{*}\right) \simeq H^{n}\left(\bar{Q}_{A}^{*}\right)$ for $n \geq 0$.
Proof. We will drop the subscript A in the proof to ease the notation.
Let $f: P \rightarrow Q$ and $g: Q \rightarrow P$ be extensions of the identity morphism id_{M} given by Proposition 23.57. The composition $g \circ f: P \rightarrow P$ is an extension of id_{M}, as is id_{P}, so $g \circ f$ is homotopic to id_{P}, by Proposition 23.57. We have $(g \circ f)_{0}=\operatorname{id}_{M}=(\mathrm{id} P)_{0}$, which implies that $\overline{g \circ f}=\bar{g} \circ \bar{f}$ and $\overline{\mathrm{id}_{P}}=\mathrm{id}_{\bar{P}}$ are also homotopic (via the same homotopy; note $h_{0}=0$ in the proof of Proposition 23.57). Similarly, $\bar{f} \circ \bar{g}$ and $\mathrm{id}_{\bar{Q}}$ are homotopic.

Applying $\operatorname{Hom}_{R}(\bullet, A)$ yields homotopic morphisms $\bar{f}^{*}: \bar{Q}^{*} \rightarrow \bar{P}^{*}$ and $\bar{g}^{*}: \bar{P}^{*} \rightarrow \bar{Q}^{*}$, with $\bar{f}^{*} \circ \bar{g}^{*}$ homotopic to $\mathrm{id}_{\bar{P}}^{*}=\operatorname{id}_{\bar{P}^{*}}$ and $\bar{g}^{*} \circ \bar{f}^{*}$ homotopic to $\mathrm{id}_{\bar{Q}}^{*}=\mathrm{id}_{\bar{Q}^{*}}$, by Proposition $\underline{23.68}$. By Lemma 23.55, \bar{f}^{*} and \bar{g}^{*} induce isomorphims $H^{n}\left(\bar{P}_{A}^{*}\right) \simeq H^{n}\left(\bar{Q}_{A}^{*}\right)$ for all $n \geq 0$.

[^8]Definition 23.72. Let A and M be R-modules. $\operatorname{Ext}_{R}^{n}(M, A)$ is the abelian group $H^{n}\left(\bar{P}_{A}^{*}\right)$ uniquely determined by Theorem 23.71 using any projective resolution P of M. If $\alpha: A \rightarrow B$ is a morphism of R-modules the map $\varphi \mapsto \alpha \circ \varphi$ induces a morphism of cochain complexes $\bar{P}^{*}, A \rightarrow \bar{P}_{B}^{*}$ and morphisms $\operatorname{Ext}_{R}^{n}(M, \alpha): \operatorname{Ext}_{R}^{n}(M, A) \rightarrow \operatorname{Ext}_{R}^{n}(M, B)$ for each $n \geq 0$.

We thus have a family of functors $\operatorname{Ext}_{R}^{n}(M, \bullet)$ from the category of R-modules to the category of abelian groups that is a cohomological δ-functor (by Theorem 23.54).

Lemma 23.73. Let M be an R-module. The functors $\operatorname{Ext}_{R}^{n}(M, \bullet)$ are additive functors and thus commute with finite direct sums and products.

Proof. This follows from Corollary $\underline{23.61}$ and the fact $H^{n}(\bullet)$ is an additive functor.
Lemma 23.74. For any two R-modules M and A we have $\operatorname{Ext}_{R}^{0}(M, A) \simeq \operatorname{Hom}_{R}(M, A)$.
Proof. Let $\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow M \rightarrow 0$ be a projective resolution of M. Applying $\operatorname{Hom}_{R}(\bullet, A)$ yields an exact sequence $0 \rightarrow M^{*} \rightarrow P_{1}^{*} \rightarrow P_{2}^{*} \rightarrow \cdots$, and we observe that

$$
\operatorname{Ext}_{R}^{0}(M, A)=H^{0}\left(\bar{P}^{*}\right)=Z^{0}\left(\bar{P}^{*}\right) / B^{0}\left(\bar{P}^{*}\right)=\operatorname{ker}\left(P_{1}^{*} \rightarrow P_{2}^{*}\right) / \operatorname{im}\left(0 \rightarrow P_{1}^{*}\right) \simeq M^{*}
$$

Theorem 23.75. Let P, Q be projective resolutions of a right R-module M. Let A be a left R-module, and let $\bullet A$ denote application of $\bullet \otimes_{R} A$. Then $H_{n}\left(\bar{P}_{*}^{A}\right) \simeq H_{n}\left(\bar{Q}_{*}^{A}\right)$ for $n \geq 0$.

Proof. We drop the superscript A in the proof to ease the notation.
Let $f: P \rightarrow Q$ and $g: Q \rightarrow P$ be extensions of the identity morphism id $_{M}$ given by Proposition 23.57. As in the proof of Theorem 23.71, $\bar{g} \circ \bar{f}$ and $\operatorname{id}_{\bar{P}}$ are homotopic, as are $\bar{f} \circ \bar{g}$ and $\mathrm{id}_{\bar{Q}}$.

Applying $\bullet \otimes_{R} A$ yields homotopic morphisms $\bar{f}_{*}: \bar{P}_{*} \rightarrow \bar{Q}_{*}$ and $\bar{g}_{*}: \bar{Q}_{*} \rightarrow \bar{P}_{*}$, with $\bar{f}_{*} \circ \bar{g}_{*}$ homotopic to $\operatorname{id}_{\bar{P}_{*}}$ and $\bar{f}_{*} \circ \bar{g}_{*}$ homotopic to id \bar{Q}_{*}. By Lemma 23.52, \bar{f}_{*} and \bar{g}_{*} induce isomorphisms $H_{n}\left(\bar{P}_{*}\right) \simeq H_{n}\left(\bar{Q}_{*}\right)$ for all $n \geq 0$.

Definition 23.76. Let A a left R-module and let M be a right R-module. $\operatorname{Tor}_{n}^{R}(M, A)$ is the abelian group $H_{n}\left(\bar{P}_{*}^{A}\right)$ uniquely determined by Theorem 23.75 using any projective resolution P of M. If $\alpha: A \rightarrow B$ is a morphism of left R-modules the map $x \otimes a \mapsto x \otimes \varphi(a)$ induces a morphism $\bar{P}_{*}^{A} \rightarrow \bar{P}_{*}^{B}$ and morphisms $\operatorname{Tor}_{n}^{R}(M, \alpha): \operatorname{Tor}_{n}^{R}(M, A) \rightarrow \operatorname{Ext}_{n}^{R}(M, B)$ for each $n \geq 0$. This yields a family of functors $\operatorname{Tor}_{n}^{R}(M, \bullet)$ from the category of left R-modules to the category of abelian groups that is a homological δ-functor (by Theorem 23.50).

Lemma 23.77. Let M be a right R-module. The functors $\operatorname{Tor}_{n}^{R}(M, \bullet)$ are additive functors and thus commute with finite direct sums and products.

Proof. This follows from Corollary 23.65 and the fact $H_{n}(\bullet)$ is an additive functor.
Lemma 23.78. For any two R-modules M and A we have $\operatorname{Tor}_{0}^{R}(M, A) \simeq M \otimes_{R} A$.
Proof. Let $\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow M \rightarrow 0$ be a projective resolution of M. Applying $\bullet \otimes_{R} A$ yields the exact sequence $\cdots P_{2 *} \rightarrow P_{1 *} \rightarrow M_{*} \rightarrow 0$, and we observe that

$$
\operatorname{Tor}_{0}^{R}(M, A)=H_{0}\left(\bar{P}_{*}\right)=Z_{0}\left(\bar{P}_{*}\right) / B_{0}\left(\bar{P}_{*}\right)=\operatorname{ker}\left(P_{1 *} \rightarrow 0\right) / \operatorname{im}\left(P_{2 *} \rightarrow P_{1 *}\right) \simeq M_{*},
$$

Remark 23.79. One can also define $\operatorname{Ext}_{R}^{n}(M, A)$ and $\operatorname{Tor}_{n}^{R}(M, A)$ using injective resolutions; see [$\mathbf{I}, \S 2.7]$ for a proof that this yields the same results.

References

[1] K. Brown, Cohomology of groups, Springer, 1982.
[2] G. J. Janusz, Algebraic number fields, 2nd ed., AMS, 1992.
[3] J.S. Milne, Class field theory, version 4.02, 2013.
[4] J.-P. Serre, Local fields, Springer, 1979.
[5] J.-P. Serre Galois cohomology, Springer, 1997.
[6] Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu.
[7] C. A. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994.

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Here we put the G-action on the left (one can also define right G-modules), and for the sake of readability we write A additively, even though we will be primarily interested in cases where A is a multiplicative group.

[^1]: ${ }^{2}$ When A is written multiplicatively its identity is denoted 1 and one should think of 0 as acting via exponentiation (but for the moment we continue to use additive notation and view A as a left $\mathbb{Z}[G]$-module).

[^2]: ${ }^{3}$ The intuition here is that P contains a presentation of M that effectively serves as a replacement for M.
 ${ }^{4}$ Applying $\operatorname{Hom}_{\mathbb{Z}}(\bullet, \mathbb{Z})$ to $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$ yields $0 \leftarrow \mathbb{Z} \leftarrow 0 \leftarrow 0 \leftarrow 0$, for example.

[^3]: ${ }^{5}$ The augmentation map is the boundary map d_{0} in the standard resolution of \mathbb{Z} by G-modules.

[^4]: ${ }^{6}$ Note that we must have $g_{1} g_{2} \varphi(h)=g_{1}\left(g_{2} \varphi\right)(h)=\left(g_{2} \varphi\right)\left(g_{1} h\right)=\varphi\left(g_{2} g_{1} h\right)=g_{2} g_{1} \varphi(h)$ in order for φ to be both a $\mathbb{Z}[G]$-module morphism and an element of a $\mathbb{Z}[G]$-module, so this will not work if G is not abelian.

[^5]: ${ }^{7}$ We use the symbols d_{n} to denote boundary maps of both C and D; in general, the domain and codomain of any boundary or coboundary map should be inferred from context.
 ${ }^{8}$ In fact $H_{n}(f): H_{n}(C) \rightarrow H_{n}(D)$ is a morphism of R-modules, but in all the cases of interest to us, either the homology groups are all trivial (as occurs for exact chain complexes, such as the standard resolution of \mathbb{Z} by $\mathbb{Z}[G]$-modules), or $R=\mathbb{Z}$ (as in the chain complexes used to define the Ext and Tor groups below), so we will generally refer to homology groups rather than homology modules.

[^6]: ${ }^{9}$ This does not imply that the Ext and Tor functors defined below commute with arbitrary direct sums and direct products; see Remarks 23.62 and 23.66 .

[^7]: ${ }^{10}$ Note the the order of composition in the homotopy relations for morphisms of chain/cochain complexes.

[^8]: ${ }^{11}$ This justifies our indexing the boundary maps $d_{n}: C_{n+1} \rightarrow C_{n}$ rather than $d_{n}: C_{n} \rightarrow C_{n-1}$.
 ${ }^{12}$ The intuition is that the truncation of projective resolution of M can serve as a replacement for M.

