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7 Torsion subgroups and endomorphism rings 

7.1 The n-torsion subgroup E[n] 

Having determined the degree and separability of the multiplication-by-n map in the pre-
vious lecture, we can now determine the structure of E[n] as a finite abelian group. Recall 
that any finite abelian group G can be written as a direct sum of cyclic groups of prime 
power order (unique up to ordering). Since #E[n] always divides deg[n] = n2, to determine 
the structure of E[n] it suÿces to determine the structure of E[`e] for each prime power ̀ e

dividing n. 

Theorem 7.1. Let E/k be an elliptic curve and let p = char(k). For each prime ̀ : (
Z/`eZ ⊕ Z/`eZ if ̀  =6 p,

E[`e] ' 
Z/`eZ or {0} if ̀  = p. 

Proof. We first suppose ̀  6= p. The multiplication-by-` map [`] is then separable, and we 
may apply Theorem 6.7 to compute #E[`] = # ker[`] = deg[`] = `2. Every nonzero element 
of E[`] has order ̀ , so we must have E[`] ' Z/`Z ⊕ Z/`Z. If E[`e] ' hP1i ⊕ · · · ⊕ hPri with 
each Pi ∈ E(k̄) of order ̀ ei > 1, then 

E[`] ' h`e1−1P i ⊕ · · · ⊕ h`er −1P i ' (Z/`Z)r , 

thus r = 2 (this argument applies to any abelian group G: the ̀ -rank r of G[`e] must be 
the same as the `-rank of G[`]). It follows that E[`e] ' Z/`eZ ⊕ Z/`eZ, since we have 
#E[`e] = # ker[`e] = deg[`e] = `2e and E[`e] contains no elements of order greater than .`e 

We now suppose ` = p. Then [`] is inseparable and its kernel E[`] has order strictly less 
than deg [`] = . Since E[`] is a ̀ -group of order less than ̀ 2, it must be isomorphic to `2 

either Z/`Z or {0}. In the latter case we clearly have E[`e] = {0} and the theorem holds, so 
we now assume E[`] ' Z/`Z. If E[`] = hP i with P ∈ E(k̄) a point of order ̀ , then since the 
isogeny [`] : E → E is surjective, there is a point Q ∈ E(k̄) for which ̀ Q = P , and the point 
Q then has order ̀ 2. Iterating this argument shows that E[`e] contains a point of order ,`e 

and by the argument above it has ̀ -rank 1, so we must have E[`e] ' Z/`eZ. 

The two possibilities for E[p] admitted by the theorem lead to the following definitions. 
We do not need this terminology today, but it will be important in the weeks that follow. 

Definition 7.2. Let E be an elliptic curve defined over a field of characteristic p > 0. If 
E[p] ' Z/pZ then E is said to be ordinary, and if E[p] ' {0}, we say that E is supersingular. 

Remark 7.3. The term “supersingular" is unrelated to the term “singular" (recall that an 
elliptic curve is nonsingular by definition). Supersingular refers to the fact that such elliptic 
curves are exceptional. 

Corollary 7.4. Let E/k be an elliptic curve. Every finite subgroup of E(k̄) is the direct sum 
of at most two cyclic groups, at most one of which has order divisible by the characteristic p 
of k. In particular, when k = Fq is a finite field of characteristic p we have 

E(Fq) ' Z/mZ ⊕ Z/nZ 

for some positive integers m, n with m|n and p - m. 
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Proof. Let p be the characteristic of k, and let T be a finite subgroup of E(k̄) of order n. If 
p - n, then T ⊆ E[n] ' Z/nZ ⊕ Z/nZ can clearly be written as a sum of two cyclic groups. 
Otherwise we may write T ' G ⊕ H where H is the p-Sylow subgroup of T , and we have 
G ⊆ E[m] ' Z/mZ ⊕ Z/mZ, where m = |G| is prime to p and H has p-rank at most 1. It 
follows that T can always be written as a sum of at most two cyclic groups, at most one of 
which has order divisible by p. 

Now that we know what the structure of E(Fq) looks like, our next goal is to bound its 
cardinality. We will prove Hasse’s Theorem, which states that 

#E(Fq) = q + 1 − t, 

√where |t| ≤ 2 q. To do this we need to introduce the endomorphism ring of E. 

7.2 Endomorphism rings 

For any pair of elliptic curves E1/k and E2/k, the set hom(E1, E2) of homomorphisms from 
E1 to E2 (defined over k) consists of all morphisms of curves E1 → E2 that are also group 
homomorphisms E1(k̄) → E2(k̄); since a morphism of curves is either surjective or constant, 
this is just the set of all isogenies from E1 to E2 plus the zero morphism. For any algebraic 
extension L/k, we write homL(E1, E2) for the homomorphisms from E1 to E2 that are 

1defined over L. 
The set hom(E1, E2) forms an abelian group under addition, where the sum α + β is 

defined by 
(α + β)(P ) := α(P ) + β(P ), 

and the zero morphism is the identity. For any α ∈ hom(E1, E2) we have 

α + · · · + α = nα = [n] ◦ α, 

where [n] is the multiplication-by-n map on E1. Provided α and n are nonzero, both [n] 
and α are surjective, as is nα, thus nα 6= 0. It follows that hom(E1, E2) is torsion free (but 
hom(E1, E2) = {0} is possible). 

Definition 7.5. Let E/k be an elliptic curve. The endomorphism ring of E is the additive 
group End(E) := hom(E, E) with multiplication defined by composition (so αβ = α ◦ β). 

Warning 7.6. Some authors use End(E) to mean Endk̄(E) rather than Endk(E). 

To verify that End(E) is in fact a ring, note that it has a multiplicative identity 1 = [1] 
(the identity morphism), and for all α, β, γ ∈ End(E) and P ∈ E(k̄) we have 

((α + β)γ)(P ) = (α + β)(γ(P )) = α(γ(P )) + β(γ(P )) = (αγ + βγ)(P ) 

(γ(α + β))(P ) = γ(α(P ) + β(P )) = γ(α(P )) + γ(β(P )) = (γα + γβ)(P ), 

where we used the fact that γ is a group homomorphism to get the second identity. 
For every integer n the multiplication-by-n map [n] lies in End(E), and the map n 7→ [n] 

defines an ring homomorphism Z → End(E), since [0] = 0, [1] = 1, [m] + [n] = [m + n] 
and [m][n] = [mn]. As noted above, hom(E, E) is torsion free, so the homomorphism 

1Technically speaking, these homomorphisms are defined on the base changes E1L and E2L of E1 and 
E2 to L, so homL(E1, E2) is really shorthand for hom(E1L , E2L ). 
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n 7→ [n] is injective and may regard Z as a subring of End(E); we will thus feel free to 
write n rather than [n] when it is convenient to do so. Note that this immediately implies 
that the multiplication-by-n maps commute with every element of End(E). Indeed, for any 
α ∈ End(E) and P ∈ E(k̄) we have 

(α ◦ [n])(P ) = α(nP ) = α(P + · · · + P ) = α(P ) + · · · + α(P ) = nα(P ) = ([n] ◦ α)(P ). 

When k = Fq is a finite field, the q-power Frobenius endomorphism πE also commutes with 
every element of End(E). This follows from the basic fact that for any rational function 

q qr ∈ Fq(x1, . . . , xn) we have r(x1, . . . , xn)q = r(x1, . . . , xn), and we can apply this to the 
rational maps defining any α ∈ End(E). Thus the subring Z[πE ] generated by πE lies in 
the center of End(E). 

2Remark 7.7. It can happen that Z[πE ] = Z. For example, when E[p] = {0} and q = p
the multiplication-by-p map [p] is purely inseparable and [p] is necessarily the composition 
of π2 = πE with an isomorphism. This isomorphism is typically [±1], in which case πE ∈ Z. 

For any nonzero α, β ∈ End(E), the product αβ = α ◦ β is surjective, since α and β are 
both surjective; in particular, αβ is not the zero morphism. It follows that End(E) has no 
zero divisors, so the cancellation law holds (on both the left and the right, a fact we will 
freely use in what follows). 

7.3 The dual isogeny 

To further develop our understanding of endomorphism rings (and isogenies in general) 
we now introduce the dual isogeny, whose existence is given by the following theorem. In 
our proof of the theorem we will appeal repeatedly to Theorem 6.10, which guarantees 
the existence of a separable isogeny with any given finite kernel, which is unique up to 
isomorphism. This implies that if α : E1 → E2 and α0 : E1 → E3 are separable isogenies 
with the same kernel then there is an isomorphism ι : E3 → E2 such that α0 = ι ◦ α. We will 
also make use of the fact that the kernel of an isogeny α : E1 → E2 of degree n is necessarily 
a subgroup of E1[n]: by Theorem 6.7, # ker α = deg α is a divisor of n = deg α, so every s 
P ∈ ker α has order dividing n and is therefore an n-torsion point (satisfies nP = 0). 

Theorem 7.8. For any isogeny α : E1 → E2 there exists a unique isogeny α̂ : E2 → E1 for 
which α̂ ◦ α = [n], where n = deg α. 

Proof. Let us first note that uniqueness is immediate: if α1 ◦α = α2 ◦ α then α1(P ) = α2(P ) 
for all P ∈ E2(k̄) (since α is surjective), and this implies that the rational maps defining α1 

and α2 must be the same, since they agree on all of the infinitely many points P ∈ E2(k̄). 
To prove existence we proceed by induction on the number of prime factors (counted with 
multiplicity) of n. Let p be the characteristic of the field k over which E1 and E2 are defined. 

If n = 1 then α is an isomorphism, α̂ = α−1 is the inverse isomorphism, and α̂ ◦ α = [1]. 
If α has prime degree ̀  6= p, then α is separable and α(E1[`]) is a subgroup of E2(k̄) of 

cardinality deg[`]/ deg α = `2/` = `. Let α0 : E2 → E3 be the separable isogeny with α(E[`]) 
as its kernel. The kernel of α0 ◦ α is then E[`], and since [`] : E1 → E1 is a separable isogeny 
with the same kernel, there is an isomorphism ι : E3 → E1 for which ι ◦ α0 ◦ α = [`]; putting 
α̂ := ι ◦ α0 yields α̂ ◦ α = [`] as desired. 

When α has prime degree equal to the characteristic p there are two cases. 
Case 1: If α is separable then ker α is a subgroup of E1[p] of order p, which is the largest 
possible size of E1[p] in characteristic p (by Theorem 7.1), so ker α = E1[p] ' Z/pZ and 
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deg [p] = p. Now deg[p] = p2, so by Corollary 6.4 we have [p] = α0 ◦ π1 for some separables
(p) (p)isogeny α0 : E → E1 of degree p, where π1 : E1 → E is the p-power Frobenius mor-1 1 

(p) (p)phism.2 We have π2 ◦ α = α(p) ◦ π1, where α(p) : E → E is obtained by replacing each1 2 
coeÿcient of α by its pth power. We have 

ker(α(p) ◦ π1) = ker(π2 ◦ α) = ker α = ker [p] = ker(α0 ◦ π1), 

since the Frobenius morphisms π1 and π2 have trivial kernel, and it follows that α(p) and α0 

are separable isogenies with the same kernel. There is thus an isomorphism ι : E(p) → E12 
such that α0 = ι ◦ α(p). If we now put α̂ = ι ◦ π2 then 

α̂ ◦ α = ι ◦ π2 ◦ α = ι ◦ α(p) ◦ π1 = α0 ◦ π1 = [p]. 

Case 2: If α is inseparable then we must have α = ι ◦ π for some isomorphism ι. If 
E[p] = {0} then [p] is purely inseparable of degree p2, so [p] = ι0 ◦ π2 for some isomorphism 
ι0, and we may take α̂ = ι0 ◦ π ◦ ι−1 . If E[p] ' Z/pZ then [p] = α0 ◦ π for some separable 
isogeny α0 of degree p and we may take α̂ = α0 ◦ ι−1 . 

If n is composite then we may decompose α into a sequence of isogenies of prime degree 
via Corollary 6.11. It follows that we can write α = α1 ◦ α2, where α1, α2 have degrees 
n1, n2 < n with n1n2 = n. Let α̂ = α̂2 ◦ α̂1, where the existence of α̂1 and α̂2 is given by 
the inductive hypothesis. Then 

α̂ ◦ α = (α̂2 ◦ α̂1) ◦ α = α̂2 ◦ α̂1 ◦ α1 ◦ α2 = α̂2 ◦ [n1] ◦ α2 = α̂2 ◦ α2 ◦ [n1] = [n2] ◦ [n1] = [n], 

where [n1] ◦ α2 = α2 ◦ [n1] because for any P ∈ E(k̄) we have 

(α2◦[n1])(P ) = α2(n1P ) = α2(P +· · ·+P ) = α2(P )+· · ·+α2(P ) = n1α2(P ) = ([n1]◦α2)(P ), 

since α2 is a group homomorphism (note that above we have used [ni] to denote the 
multiplication-by-ni map on di˙erent elliptic curves in the argument above). 

Definition 7.9. The isogeny α̂ given by Theorem 7.8 is the dual isogeny of α. 

Remark 7.10. There is a general notion of a dual isogeny for abelian varieties of any 
dimension. If we have an isogeny of abelian varieties α : A1 → A2 then the dual isogeny 

α̂ : Â2 → Â1, 

is actually an isogeny between the dual abelian varieties Â2 and Â1. We won’t give a 
definition of the dual abelian variety here, but the key point is that in general, abelian 
varieties are not isomorphic to their duals. But abelian varieties of dimension one (elliptic 
curves) are self-dual. This is yet another remarkable feature of elliptic curves. 

As a matter of convenience we extend the notion of a dual isogeny to hom(E1, E2) and 
End(E) by defining 0 = 0ˆ , we define deg 0 = 0, which we note is consistent with ̂0 ◦ 0 = [0] 
and the fact that degrees are multiplicative. 

Lemma 7.11. For an isogeny α of degree n we have deg α̂ = deg α = n and 

α ◦ α̂ = α̂ ◦ α = [n], 

thus α̂̂ = α. For any integer n the endomorphism [n] is self-dual, that is, [n̂] = [n]. 
2 3 (p) (p) 2 32If E1 : y = x + A1x + B1 then E1 denotes the elliptic curve E1 : y = x + A1

px + B1 
p. 

18.783 Spring 2017, Lecture #7, Page 4 

/courses/mathematics/18-783-elliptic-curves-spring-2017/lecture-notes/MIT18_783S17_lec6.pdf
/courses/mathematics/18-783-elliptic-curves-spring-2017/lecture-notes/MIT18_783S17_lec6.pdf


Proof. The first statement follows from (deg α̂)(deg α) = deg [n] = n2. We now note that 

(α ◦ α̂) ◦ α = α ◦ (α̂ ◦ α) = α ◦ [n] = [n] ◦ α, 

and therefore α ◦ α̂ = [n]; since the isogenies involved are all surjective, it follows that we 
can cancel α on both sides to obtain α ◦ α̂ = [n]. The last statement follows from the fact 
that [n] ◦ [n] = [n2] = [deg n]. 

The one other fact we need about dual isogenies is the following. 

Lemma 7.12. For any α, β ∈ hom(E1, E2) we have α\+ β = α̂+ β̂. 

Proof. We will defer the proof of this lemma — the nicest proof uses the Weil pairing, which 
we will see later in the course. 

We now return to the setting of the endomorphism ring End(E) of an elliptic curve E/k. 

Lemma 7.13. For any endomorphism α we have α + α̂ = 1 + deg α − deg(1 − α). 

Note that in the statement of this lemma, 1 − α denotes the endomorphism [1] − α and 
the integers deg α, and deg(1 − α) are viewed as elements of End(E) via the embedding 
Z ,→ End(E) defined by n 7→ [n] 

Proof. For any α ∈ End(E) (including α = 0) we have 

deg(1 − α) = (1\− α)(1 − α) = (1̂− α̂)(1 − α) = (1 − α̂)(1 − α) = 1 − (α + α̂) + deg(α), 

and therefore α + α̂ = 1 + deg α − deg(1 − α). 

A key consequence of the lemma is that α + α̂ is always a multiplication-by-t map for 
some integer t ∈ Z. 

Definition 7.14. The trace of an endomorphism α is the integer tr α := α + α̂. 

Note that for any α ∈ End(E) we have tr α̂ = tr α, and deg α̂ = deg α. This implies that 
α and α̂ have the same characteristic polynomial. 

Theorem 7.15. Let α be an endomorphism of an elliptic curve. Both α and its dual α̂ are 
roots of the polynomial 

λ2 − (tr α)λ + deg α = 0. 

Proof. α2 − (tr α)α + deg α = α2 − (α + α̂)α + α̂α = 0, and similarly for α̂. 

7.4 Endomorphism restrictions to E[n] 

Let E be an elliptic curve over a field of characteristic p (possibly p = 0). For any α ∈ 
End(E), we may consider the restriction αn of α to the n-torsion subgroup E[n]. Since 
α is a group homomorphism, it maps n-torsion points to n-torsion points, so αn is an 
endomorphism of the abelian group E[n], which we view as a free (Z/nZ)-module. 

Provided n is not divisible by p, we have E[n] ' Z/nZ ⊕ Z/nZ with rank 2, and we 
can pick a basis hP1, P2i for E[n] as a (Z/nZ)-module, so that every element of E[n] can 
be written uniquely as a (Z/nZ)-linear combination of P1 and P2 — it suÿces to pick any 
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P1, P2 ∈ E[n] that generate E[n] as an abelian group. Having fixed a basis for E[n], we may � � 
a b represent αn as a 2 × 2 matrix c d , where a, b, c, d ∈ Z/nZ are determined by 

α(P1) = aP1 + bP2, 

α(P2) = cP1 + dP2. 

This matrix representation depends on our choice of basis but its conjugacy class does not; 
in particular the trace tr αn and determinant det αn are independent of our choice of basis. 

A standard technique for proving that two endomorphisms α and β are equal is to prove 
2that αn = βn for some suÿciently large n. If n is larger than the degree of α − β, then 

αn = βn implies ker(α − β) > deg(α − β), which is impossible unless α − β = 0, in which 
case α = β. To handle situations where we don’t know the degree of α − β, or don’t even 
know exactly what β is (maybe we just know βn), we need a more refined result. 

Lemma 7.16. Let α and β be endomorphisms of an elliptic curve E/k and let m be the √ 
maximum of deg α and deg β. Let n ≥ 2 m +1 be an integer prime to the characteristic of 
k, and also relatively prime to the integers deg α and deg β. If αn = βn then α = β. 

Proof. We shall make use of the following fact. Let r(x) = u(x)/v(x) be a rational function 
in k(x) with u ⊥ v and v monic. Suppose that we know the value of r(xi) for N distinct 
values x1, . . . , xN for which v(xi) 6= 0. Provided that N > 2 max{deg u, deg v} + 1, the 
polynomials u, v ∈ [x] can be uniquely determined using Cauchy interpolation; see [1, §5.8] 
for an eÿcient algorithm and a proof of its correctness. In particular, two rational functions 
with degrees bounded by N as above that agree on N distinct points must coincide. � � 

u(x) s(x)Now let α(x, y) = y be in standard form, with u ⊥ v, and v monic. If we v(x) , t(x) 
know the value of α(P ) at 2 deg α + 2 aÿne points P 6∈ ker α with distinct x-coordinates, 
then we can uniquely determine u and v. For each x0 ∈ k̄ at most 2 points P ∈ E(k̄) have 
x-coordinate x0, so it suÿces to know α(P ) at 4 deg α + 4 aÿne points not in ker α. 

For n ≥ 2 
√ 
m + 1 we have n2 ≥ 4m + 4 

√ 
m + 1, and E[n] contains n2 − 1 ≥ 4 deg α + 4 

aÿne points, none of which lie in ker α, since # ker α divides deg α which is coprime to n. 
Thus αn uniquely determines the x-coordinate of α(P ) for all P ∈ E(k̄). The same argument 
applies to βn and β, hence α(P ) = ±β(P ) for all P ∈ E(k̄). The kernel of at least one of 
α + β and α − β is therefore infinite, and it follows that α = ±β. 

2We have n > 4 deg α ≥ 4, which implies that α(P ) cannot lie in E[2] for all P ∈ E[n] 
(since #E[2] = 4). Therefore α(P ) 6 −α(P ) for some P ∈ E[n], and for this P we have = 
α(P ) 6 (P ) = −βn 6= −α(P ) = −αn (P ) = −β(P ), so α = −β and we must have α = β. 

The following theorem provides the key connection between endomorphisms and their 
restrictions to E[n]. 

Theorem 7.17. Let α be an endomorphism of an elliptic curve E/k and let n be a positive 
integer prime to the characteristic of k. Then 

tr α ≡ tr αn mod n and deg α ≡ det αn mod n. 
√ 

Proof. We will just prove the theorem for odd n prime to deg α such that n ≥ 2 deg α +1, 
which is more than enough to prove Hasse’s theorem. The general proof relies on properties 
of the Weil pairing that we will see later in the course. 

We note that the theorem holds for α = 0, so we assume α = 06 . Let n be as above and let 
tn = tr α mod n and dn = deg α mod n. Since α and α̂ both satisfy λ2 − (tr α)λ +deg α = 0, 
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both αn and α̂n must satisfy λ2 − tnλ + dn = 0. It follows that αn + α̂n and αnα̂n are the � � 
a b scalar matrices tnI and dnI, respectively. Let αn = , and let δn = det αn. The fact c d 

that α̂nαn = dnI = 0 6 with dn prime to n implies that αn is invertible, and we have � � 
dn d −b 

α−1α̂n = dn = n det αn −c a 

If we put � := dn/ det αn and plug the expression for α̂ into αn + α̂n = tnI we get � � � � � � 
a 
c 

b 
d 

+ � 
d 
−c 

−b 
a 

= 
tn 

0 
0 
tn 

. 

Thus a + �d = tn, b − �b = 0, c − �c = 0, and d + �a = tn. Unless a = d and b = c = 0, we 
must have � = 1, in which case dn = det αn and tn = a + d = tr αn as desired. 

If a = d and b = c = 0 then αn is a scalar matrix. Let m be the unique integer 
with absolute value less than n/2 such that αn = mn, where mn is the restriction of the √ 
multiplication-by-m map to E[n]. We then have deg m = m2 and n ≥ 2 deg m+1. Since we √ 
also have n ≥ 2 deg α+1 we must have α = m, by Lemma 7.16. But then α̂ = m̂ = m = α, 
so tr α = 2m ≡ tr mI ≡ tr αn mod n and deg α = m2 ≡ det mI ≡ det αn mod n. 

7.5 Separable and inseparable endomorphisms 

Recall that the Frobenius endomorphism πE is inseparable. In order to prove Hasse’s theo-
rem we will need to know that πE − 1 is separable. This follows from a much more general 
result: adding a separable isogeny to an inseparable isogeny always yields a separable isogeny. 
Note that the sum of two separable isogenies need not be separable: in characteristic p > 0, 
if we have a + b = p and both a and b prime to p, then [a] and [b] are both separable but 
[a] + [b] = [a + b] = [p] is inseparable. 

Lemma 7.18. Let α and β be isogenies from E1 to E2, with α inseparable. Then α + β is 
inseparable if and only if β is inseparable. 

Proof. If β is inseparable then we can write α = αsep ◦ πm and β = βsep ◦ πn, where π is the 
p-power Frobenius map and m,n > 0. We then have 

α + β = αsep ◦ πm + βsep ◦ πn = (αsep ◦ πm−1 + βsep ◦ πn−1) ◦ π, 

which is inseparable (any composition involving an inseparable isogeny is inseparable because 
the inseparable degrees multiply). 

If α + β is inseparable, then so is −(α + β), and α − (α + β) = β is a sum of inseparable 
isogenies, which we have just shown is inseparable. 

Remark 7.19. Since the composition of an inseparable isogeny with any isogeny is always 
inseparable, Lemma 7.18 implies that the inseparable endomorphisms in End(E) form an 
ideal (provided we view 0 as inseparable, which we do). 
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