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6 Isogeny kernels and division polynomials

In this lecture we continue our study of isogenies of elliptic curves. Recall that an isogeny
is a surjective morphism that is also a group homomorphism, equivalently, a non-constant
rational map that fixed the identity. In the previous lecture we showed that every nonzero
isogeny α : E1 → E2 between elliptic curves in short Weierstrass form y2 = x3 + Ax + B
can be written in the standard affine form

u(x) s(x)
α(x, y) =

(
, y

v(x) t(x)

)
,

where u ⊥ v and s ⊥ t are pairs of relatively prime polynomials in k[x].1 For any affine point
(x0, y0) ∈ ¯E1(k), we have α(x0, y0) = 0 if and only if v(x0) = 0 (equivalently, t(x0) = 0, by
Lemma 5.22); this follows from the fact that kerα is a subgroup, so if P = (x0, y0) ∈ kerα

¯then so is −P = (x0,−y0), and this accounts for every point in E(k) with x-coordinate x0.
It follows that

kerα = {(x0, y0) ∈ ¯E1(k) : v(x0) = 0} ∪ {0}

is completely determined by the polynomial v(x) (here 0 = (0 : 1 : 0) is the point at infinity).
When α is the multiplication-by-n map P 7→ nP = P + · · · + P (which is an isogeny

because it is a group homomorphism defined by a non-constant rational map), the kernel
of α is the n-torsion subgroup

E[n] := {P ∈ ¯E(k) : nP = 0}.

Torsion subgroups play a key role in the theory of elliptic curves. In particular, when k = Fq

is a finite field, the finite abelian group E(Fq) is completely determined by its intersection
with the n-torsion subgroups E[n] (in fact, its intersections with E[`e] for the prime powers
`e that divide #E(Fq)). Understanding the structure of E[n] will allow us to understand
the structure of E(Fq), and will also turn out to be the key to efficiently computing #E(Fq).

6.1 Kernels of isogenies

Recall that we defined the degree of an isogeny α in standard form to be max{deg u,deg v},
and said that α is separable whenever u ′ = 0. We are going to prove that for separablev
isogenies, the order of the kernel of α is equal to its degree. But first let us dispose of the
inseparable case by showing that every

(
isogen

)
y can be decomposed into the composition of

a separable isogeny and a power of the p-power Frobenius π (which has trivial kernel).

Lemma 6.1. Let u and v be relatively prime polynomials in k[x].(u
v

)′
= 0 ⇐⇒ u′ = v′ = 0 ⇐⇒ u = f(xp) and v = g(xp),

where f and g are polynomials in k[x] and p is the characteristic of k (which may be zero).

1The assumption that E1 and E2 are in short Weierstrass form implies that we are not in characteristic 2
(and rules out some curves in characteristic 3). Most of the results we will prove can be extended to curves
in general Weierstrass form and therefore apply to any elliptic curve. Where this is true we will state our
theorems generally, but our proofs will use elliptic curves in short Weierstrass form.
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′ ′
Proof. Suppose

(
u
v

)′
= u v−v u

v2
= 0. Then

u′v = v′u.

¯ ¯The polynomials u and v have no common roots in k, therefore every root of u in k must
also be a root of u′, with at least the same multiplicity. But deg u′ < deg u, so this is
possible only if u′ = 0, and by the same argument we must also have v′ = 0. Conversely, if
u′ = v′ = 0 then u′v = v′u. This proves the first equivalence.

Now let u(x) = n a
n

nx . If u′(x) = nanx
n−1 = 0, then nan = 0 for every n, which

means that n must be a multiple of p for every nonzero an (if p = 0 this means u′ = 0). In
this case we can write

∑
u as

∑

u(x) =
∑

a pm p
pmx = f(x ),

m

where f =
∑

m amx
m. Similarly, if v′(x) = 0 then v(x) = g(xp) for some g ∈ k[x].

Conversely, if u(x) = f(xp) then u′(x) = pxp−1f ′(xp) = 0, and similarly for v(x).

Corollary 6.2. Over a field of characteristic zero, every isogeny is separable.

We now show that every inseparable isogeny arises as the composition of a separable
isogeny with some power of the p-power Frobenius map π : (x, y, z) 7→ (xp, yp, zp).

Lemma 6.3. Let α : E1 → E2 be an inseparable isogeny of elliptic curves

E : y2 = x3 +A x+B E : y2 3
1 1 1 2 = x +A2x+B2

defined over a field k of characteristic p > 0, Then α can be written in the form

α = (r1(x
p), r2(x

p)yp)

for some rational functions r1, r2 ∈ k(x).

Proof. Let α(x, y) =
u(x) = r1(x

p) for somev(x)
p p

(u(x) s(x), y
)

be in standard form. It follows from Lemma 6.1 thatv(x) t(x)

r1 ∈ s(x)k(x); we only need to show that y can be put in the formt(x)

r2(x )y . As in the proof of Lemma 5.22, substituting u/v and s/t into the equation for E2

and using the equation for E1 to eliminate y2 yields the equality

v3s2f = t2w,

where f(x) = x3 + A1x+B1 and w = u3 + A2uv
2 +B2v

3. Since α is inseparable, we have

u′ = v′ = 0, hence w′ = 0, and therefore w f
′

3

′
= s2

2 = 0. Thus s(x)2f(x) = g(xp) and
v t

¯t(x)2 = h(xp), for some polynomials g and h. Ev

(
ery

)
root of g(xp) in k has multiplicity p

¯and the roots of f in k are distinct, thus

(
we

)
may write s2f = s21f

p, where s1 = g1(x
p) for

some polynomial g1 (here we have used the fact that p is odd). We then have

(s(x)y)2 ≡ s(x)2f(x) = g (xp)2f(x)p ≡ g (xp)2yp1 1 ,

where the equivalences are modulo the curve equation for E1. Thus(
s(x)

y
t(x)

)2

≡
(
g1(x

p)
yp

h(xp)

)2

= (r(xp)yp)2,

s(x)where r(x) = g1(x)/h(x). It follows that y ≡ r )yp2(x
p with r2 = ±r, since two rationalt(x)

functions that agree up to sign at infinitely many points can differ only in sign.
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Corollary 6.4. Let α be an isogeny over a field k of characteristic p > 0. Then

α = αsep ◦ πn

for some separable isogeny αsep and integers n ≥ 0, where π is the p-power Frobenius
morphism (x, y, z) 7→ (xp, yp, zp). We then have degα = pn degαsep.

Proof. This holds in general, but we will only prove it for p > 3. If α is separable then
αsep = α and n = 0, so we now assume α is inseparable. By the lemma, we may write
α = (r1(x

p), r2(x
p)yp) for some r1, r2 ∈ k(x). We then have α = α1 ◦ π, where α1 =

(r1(x), r2(x)y). If α1 is inseparable we apply the same procedure to α1 (recursively) and
eventually obtain α = αn ◦πn where αn is a separable isogeny (this process must terminate,
since degα is finite and the each step reduces the degree by a factor of p). We may then
take αsep = αn.

Remark 6.5. Note that the isogeny αsep does not necessarily have the same domain
as α : E → E , since the image of πn is not necessarily E (but πn1 2 1 will map E1 to E1

whenever E1 is defined over Fpn). Alternatively we could decompose α as

α = πn ◦ α̃sep,

where the rational functions defining α̃sep are obtained from the rational functions defining
n

αsep by taking pnth roots of each coefficient (note that x 7→ xp is a field automorphism of
n

k, so it has an inverse x 7→ x1/p ). In the case that α, E1,E2 are all defined over Fpn we
will have α̃sep = αsep, but not in general.

With α = αsep ◦ πn as in the corollary above, the degree of αsep is called the separable
degree of α, denoted deg n

s α; the inseparable degree of α is p , and is denoted degi α. It
follows from the corollary that the degree of α is always the product of its separable and
inseparable degrees:

degα = (degs α)(degi α).

The inseparable isogeny πn has separable degree 1; such isogenies are said to be purely
inseparable. The degree of a purely inseparable isogeny is always a power of p, but the
converse does not hold (as we shall see in the next lecture).

Remark 6.6. Not every purely inseparable isogeny is inseparable; in particular every
isogeny of degree 1 is both separable and purely inseparable (this includes all isomorphisms
of elliptic curves). The terminology is slightly unfortunate but we are stuck with it. We
will generally only be interested in purely inseparable isogenies of degree greater than 1.

We can now prove our first main result.

Theorem 6.7. The order of the kernel of an isogeny is equal to its separable degree.

Proof. Let α = αsep ◦ πn. Then # kerα = # kerαsep, since the kernel of π (and hence πn)
is trivial. Thus it suffices to consider the case α = αsep, which we now assume.

u(x) s(x) ¯Let α(x, y) = ( , y) be in standard form and pick a point (a, b) in α(E1(k)) withv(x) t(x)

a, b = 0 and such that a is not equal to the ratio of the leading coefficients of u and v (this
¯is possible because α(E1(k) is infinite). We now consider the set

S(a, b) = { ¯(x0, y0) ∈ E1(k) : α(x0, y0) = (a, b)}
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of points in the pre-image of (a, b). Since α is a group homomorphism, #S(a, b) = # kerα.
If (x0, y0) ∈ S(a, b) then

u(x0) s(x0)
= a, y0 = b.

v(x0) t(x0)

We must have t(x0) = 0, since α is defined at (x0, y0), and b = 0 implies s(x0) = 0. It
t(xfollows that y0 = 0) b is uniquely determined by x0. Thus to compute #S(a, b) it sufficess(x0)

to count the number of distinct values of x0 that occur among the points in S(a, b).
We now let let g = u − av so that α(x0, y0) = (a, b) if and only if g(x0) = 0. We must

have deg g = degα, since a is not equal to the ratio of the leading coefficients of u and v (so
their leading terms do not cancel). The cardinality of S(a, b) is then equal to the number
of distinct roots of g.

Any x0 ∈ k̄ is a multiple root of g if and only if g(x0) = g′(x0) = 0, equivalently, if
and only if av(x0) = u(x0) and av′(x0) = u′(x0). If we multiply opposite sides of these
equations and cancel the a’s we get

u′(x0)v(x0) = v′(x0)u(x0). (1)

′ − ′ ¯Now α is separable, so u v v u = 0 has only a finite number of roots. Since α(E1(k)) is
infinite and #S(a, b) = # kerα is finite, we may assume that (a, b) was chosen so that (1)
is not satisfied for any (x0, y0) in S(a, b). Then every root x0 of g is distinct and we have

# kerα = #S(a, b) = deg g = degα,

as desired.

6.2 Isogenies from kernels

→ ¯We have seen that associated to each isogeny α : E1 E2 is a finite subgroup of E1(k)
whose order is equal to the separable degree of α. It is reasonable to ask whether the

¯converse holds, that is, given a finite subgroup G of E1(k) does their exist an isogeny α
from E1 to some elliptic curve E2 with G as its kernel?

The answer is yes. Moreover, if we restrict our attention to separable isogenies (which
we should, since if α = αsep ◦ πn then the purely inseparable isogeny πn has trivial kernel),
the isogeny α and the elliptic curve E2 are determined up to isomorphism by G.

We have not developed quite enough theory at this point to give a self-contained proof
of this result, but it is so striking and so useful that we will take a moment to sketch the
proof and give explicit formulas for constructing α and E2 from G that are due to Velú [2].

¯Theorem 6.8. Let E/k be an elliptic curve and let G be a finite subgroup of E(k). There
exists an elliptic curve E′ and a separable isogeny φ : E → E′ with kerφ = G. The curve E′

and the isogeny φ are defined over a finite extension of k are are unique up to isomorphism.

We can actually be more precise about the field over which E′ and φ are defined, it is
¯the minimal extension L/k for which G is invariant under the action of Gal(k/L) (each field

¯ ¯automorphism in Gal(k/k) acts on points P ∈ E(k) via its action on the coordinates of P );
we then say that G is defined over L. To say that G is invariant under this action simply
means that the image of G under each σ

¯
∈ ¯Gal(k/L) is G; it does not mean that every

point in G is necessarily fixed by Gal(k/L), which is a stronger condition (so G might be
defined over k even though it contains points that are not).

6 6 6
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Proof sketch. Given any smooth projective curve C and a finite group G of automorphisms
of the curve (invertible morphisms from the curve to itself), there is a smooth projective
curve C/G and a surjective morphism φ : C → C/G that maps each G-orbit {σ(P ) : σ ∈ G}
of points P ∈ ¯C(k) to a distinct point in C/G. The curve C/G is called the quotient of
C by G. The standard way to prove this is to use the categorical equivalence of smooth
projective curves and their function fields to derive C/G and φ from the field embedding

k(C)G
∗
↪→ k(C),

G∗where k(C) denotes the subfield of k(C) fixed by the automorphisms σ∗ : k(C)→ k(C))
induced by the automorphisms σ : C → C in G (so σ∗(f) = f ◦ σ). The map φ is separable

∗
because k(C)/k(C)G is separable, and provided that the group G is defined over k, both
φ and C/G are defined over k (otherwise base change E to the field of definition of G).

In our situation the curve C is an elliptic curve, and we can associate to each point
P ∈ ¯E(k) the automorphism τP : Q 7→ Q + P , the translation-by-P map. Note that τP is
not an isogeny because it does not fix the point 0 (unless P = 0), but it is a morphism
E → E, and it has an inverse τ−P , so it is an automorphism. Thus we can associate a

¯group of automorphisms G to any finite subgroup of E(k) and we then obtain a morphism
φ : E 7→ E/G from E to its quotient by G.

Now from what we have said so far, it’s not immediately clear that E/G is actually an
elliptic curve, but this is indeed the case. The fact that φ is surjective implies that the

¯genus of E/G is at most 1, and the fact that φ is unramified (because the G-orbits of E(k)
all have the same size) implies that its genus is equal to 1; this follows from the Hurwitz
genus formula [1, II.2.7]. Assuming G is defined over k, the point φ(0) will be rational and
we can take it as our distinguished rational point (and in any case φ(0) will be defined over
the field of definition of E/G). So E/G is an elliptic curve, and φ : E → E/G is a surjective
morphism that fixes the identity and is therefore an isogeny; as noted above, it is separable.

¯ ¯The kernel of φ is just the G-orbit of 0 in E(k), which is precisely the subgroup of E(k)
that we started with.

Moreover, if we have another separable isogeny φ′ : E → E′ with the same kernel, then
we can view k(E′) as a subfield of k(E) via the induced embedding φ∗ : k(E′) → k(E),
and then k(E′) is fixed by every automorphism in G. And since φ′ is separable, we have
[k(E) : k(E′)] = #G, so k(E′) must be (isomorphic to) the fixed field k(E)G. It follows
that there exists an isomorphism ι : E/G→∼ E′ for which φ′ = ι◦φ, and the curve E/G and
the isogeny φ are unique up to such an isomorphism.

Corollary 6.9. An isogeny of composite degree can always be decomposed into a sequence
of isogenies of prime degree.

Proof. Let α : E1 → E2 be an isogeny. If we are working in a field of characteristic p > 0,
by writing α as α = α n

sep ◦ π , we can decompose πn = π ◦ · · · ◦ π as a sequence of isogenies
of prime degree p. Thus it suffices to consider the case where α is separable. As a non-
trivial abelian group, G = kerα contains a subgroup H of prime order. By the theorem,
there exists a separable isogeny α1 : E1 → E3 with H as its kernel. Then α1(G) is a finite

¯subgroup of E3(k) isomorphic to G/H, and there is a separable isogeny α2 : E3 → E4 with
α1(G) as its kernel. The kernel of the composition α2 ◦ α1 is G = kerα, so there exists an
isomorphism ι : E4 → E2 such that α = ι ◦ α2 ◦ α1.

We now proceed by induction and apply the same decomposition to ι ◦ α2, which has
smaller degree than α. We eventually obtain a sequence of separable isogenies of prime
degree whose composition is equal to α.
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This is all very nice from an abstract point of view, but it is not immediately useful for
practical applications. We would really like to have an explicit description of the elliptic
curve E/G and the isogeny φ. So let E : y2 = x3 + Ax + B be an elliptic curve and let G

¯be a finite subgroup of E(k). Let G=0 denote the set of nonzero points in G, all of which
¯are affine points Q = (xQ, yQ), and for each point P = (xP , yP ) in E(k) that is not in G,

let us define

φ(P ) :=

xP +
∑

(xP+Q − xQ) , yP +
∑

(yP+Q − yQ) .
Q∈G=0 Q∈G=0



¯Here xP and yP are variables, xQ and yQ are fixed elements of k, and x


P+Q and yP+Q are

the affine coordinates of P + Q, which we can view as rational functions of xP and yP by
plugging the coordinates of P and Q into the formulas for the group law.

It’s not immediately obvious what the image of this map is, but it is clearly a non-
constant rational map, so it defines a morphism from E to some smooth projective curve E′.
Moreover, we can see that the group law on E induces a group law on E′ that is defined by
rational maps, thus E′ is an abelian variety (of dimension one), hence an elliptic curve. For
any P 6∈ G we have φ(P ) = φ(P +Q) if and only if Q ∈ G, so the kernel of φ must be G.

Thus, assuming it is separable, φ is the isogeny we are looking for (up to isomorphism).
By using the group law to write xP+Q and yP+Q as rational functions in terms of xP and yP
(and the coordinates of the points in G, which we regard as constants), we can get explicit
equations for φ and determine an equation for its image E′. The details are somewhat
involved (see [3, Thm. 12.16]), so we will just give the formulas. To simplify the expressions
we will assume that the order of G is either 2 or odd; this covers all isogenies of prime
degree, and by the corollary above, this is sufficient to handle every case.

Theorem 6.10 (Vélu). Let E : y2 = x3 ¯+Ax+B be an elliptic curve over k and let x0 ∈ k
be a root of x3 +Ax+B. Define t := 3x20 +A and w := x0t. The rational map(

x2 − x0x+ t (x )
φ(x, y) := ,

− x 2
0 − t

y
x− x 2

0 (x− x0)

)
is a separable isogeny from E to E′ : y2 = x3+A′x+B′, where A′ := A−5t and B′ := B−7w.
The kernel of φ is the group of order 2 generated by (x0, 0).

Proof. It is clear that φ is a separable isogeny of degree 2 with (x0, 0) in its kernel. the only
thing to check is that E′ is it’s image, which is an easy verification (just plug the formulas
for φ(x, y) into the equation for E′).

Remark 6.11. If x0 ∈ k then φ and E′ will both be defined over k, but in general they
will be defined over the extension field k(x0) which contains A′ and B′.

Theorem 6.12 (Vélu). Let E : y2 = x3 + Ax+B be an elliptic curve over k and let G be
¯a finite subgroup of E(k) of odd order. For each nonzero Q = (xQ, yQ) in G define

tQ := 3x2Q +A, uQ := 2y2Q, wQ := uQ + tQxQ,

and let

t :=
∑ tQ

tQ, w :=
∑ uQ

wQ, r(x) := x+ + .
x xQ (x xQ)2

Q∈G=0 Q∈G=0 Q

∑
∈G=0

(
− −

)
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The rational map
φ(x, y) := r(x), r′(x)y

is a separable isogeny from E to E′ : y2 = x3+

(
A′x+B′, wher

)
e A′ := A−5t and B′ := B−7w,

with kerφ = G.

Proof. This is a special case of [3, Thm. 12.16].

Remark 6.13. The formulas for t, w, r(x) sum over all the nonzero points in G but ef-
fectively depend only on the x-coordinates xQ. Since |G| is odd and Q = (xQ, yQ) ∈ G if
and only if −Q = (xQ,−yQ) ∈ G, one can sum over half the points in G=0 and double the
result. The elliptic curve E′ and φ are defined over any extension L/k where G is defined

¯(Gal(k/L)-invariant).

Remark 6.14. Theorem 6.12 implies that (possibly after composing with an isomorphism)
we can put any separable isogeny α of odd degree in the form(

u ( u )′ ) (
u u′w

α(x, y) = , y = ,
2 2 2

− 2w′u
y

w w w3

)
,

w

for some relatively prime polynomials u and w in k[x].

6.3 Jacobian coordinates

We now turn to the multiplication-by-n map P 7→ nP , which we will denote by [n]. We want
to write the isogeny [n] in standard form. To do this, it turns out to be more convenient to
work with Jacobian coordinates, which we now define.

Recall that points in standard projective coordinates are nonzero triples (x : y : z)
subject to the equivalence relation

(x : y : z) = (λx : λy : λz),

for any λ ∈ k×. We will instead work with the equivalence relation

(x : y : z) = (λ2x : λ3y : λz),

which corresponds to assigning weights 2 and 3 to the variables x and y (and leaving z with
weight 1). Projective coordinates with these weights are called Jacobian coordinates. The
homogeneous curve equation for E in Jacobian coordinates then has the form

y2 = x3 +Axz4 +Bz6,

which explains the motivation for giving x weight 2 and y weight 3: the leading terms
for x and y do not involve z. In Jacobian coordinates, each point (x : y : z) with z = 0
corresponds to the affine point (x/z2, y/z3), and the point at infinity is still (0 : 1 : 0).

Remark 6.15. As an aside, the general Weierstrass form of an elliptic curve in Jacobian
coordinates is

y2 + a1xyz + a yz3 = x3 + a 2
3 2x z2 + a4xz

4 + a6z
6,

which is a weighted homogeneous equation of degree 6. Each ai is the coefficient of a term
with degree i in z. This explains the otherwise mysterious fact that there is no Weierstrass
coefficient a5.
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6.4 The group law in Jacobian coordinates

We now compute formulas for the elliptic curve group law in Jacobian coordinates, beginning
with addition. Recall that in affine coordinates, to compute the sum P3 = (x3, y3) of two
affine points P1 = (x1, y1) and P2 = (x2, y2) with P1 = ±P2 we use the formulas

x3 = m2 − (x1 + x2) and y3 = m(x1 − x3)− y1,

where m = y1−y2 is the slope of the line through P1 and P2. In Jacobian coordinates wex1−x2

have Pi = (xi/z
2 3
i , yi/zi ) and the formula for the x-coordinate becomes

x3
(
y

)
3

1/z
3
1 − y2/z3

2
2

(
x1 x2

)
(y1z2 − y 3

2z − (x z2 + x 2)(x1z
2

1 2 − x2z21)2 1 2 2z 1)2
= + = .

z23 x1/z2 2 2 2 2 2 2 2 2
1

−
− x2/z2 z1 z2 (x1z2 − x2z1) z1z2

This formula can be simplified by using y2i − x3 = Ax 6
iz

4
i i + Bzi to get rid of the terms in

the numerator containing y2i or x3i . This makes the numerator divisible by z21z
2
2 allowing us

to cancel this with the corresponding factor in the denominator. We have

x (y2z6 − x3z6) 3 6 2 4
3 1 2 1 2 + (y22z

6 2
1 − x2z1) + x1x2z1z2 + x 2 3

1x
2 3

= 2z
4
1z2

z2
− 2y1y2z1z2

3 (x1z22 − x2z2)2z2 2
1 1z2

(Ax1z
4
1 +Bz61)z62 + (Ax2z

4
2 +Bz62)z61 + x21x

2
2z

= 1z
4
2 + x1x

2
2z

4
1z

2 3 3
2

2

− 2y1y2z1z2
(x1z2 − x 2

2z1)2z21z
2
2

A(x z2 + x z2)z2z2 + 2Bz4 4
1 2

= 2 1 1 2 1z2 − 2y1y2z1z2
.

(x1z22 − x 2
2z1)2

For the y-coordinate, using y3 = m(x1 − x3)− y1 = m(2x1 + x2)−m3 − y1 we have

y 3 3 3 3
3

( 3
y1/z1 − y2/z2 2x1 x2 y1/z1 − y2/z2 y1

= +
z3 x /z23 1 1 − x2/z2

(
z22 1 z22

(y )(2x z2 + x z2)(x

)
−

z3 y z3

)
2

(
x1/z2 − x 2 3

1 2/z2

)
−
z1

1 2 − 2 2 3 3 3 3 2 2 3
2 1 1 2 2 1 1z2 − x2z1) − (y1z2 y2z1) y1z2(x1z2 x2z1)

=
(x z2 − x z2)3z3z3

− − −
1 2 2 1 1 2

=
(x z2

· · ·
1 2 − x2z21)3

Where the missing numerator is some complicated polynomial in x1, y1, z1, x2, y2, z2, A,B.
These formulas look horrible, but the key point is in Jacobian coordinates we now have

z3 = x1z
2
1 − x2z21 , (2)

which is actually a lot simpler than it would have otherwise been; note that the z-coordinate
is the most interesting to us, because it will determine the kernel we are interested in.

The doubling formulas are simpler. In affine coordinates the slope of the tangent line is
m = (3x21 +A)/(2y1). For the x-coordinate we have

2
x3 3(x 2

1/z1)2 +A x 2
1 (3x1 +Az4 x41)2 8x1y

2
1 1 2Ax2 1

= 2 = = 1z
4
1 8Bx z61 +A2z81

z2 y /z33

(
− −

2 z2
−

1

)
1 (2y 2

1
−

1z1) (2y1z1)2

8
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and for the y-coordinate we get

y3
(

/z2
3

3(x1 1)2 +A 3x /z21 3(x1 1)2 +A y1
=

z33 2y1/z31

)
z21
−
(

2y1/z31

)
−
z31

12x1y
2 2 4 2 4 3 4

= 1(3x1 +Az1)− (3x1 +Az1) − 8y1
(2y1z1)3

x6 +
= 1 5Ax41z

4
1 + 20Bx31z

6
1 − 5A2x21z

8
1 − 4ABx1z

10
1 − (A3 + 8B2)z121 .

(2y1z1)3

Thus
z3 = 2y1z1. (3)

6.5 Division polynomials

We now wish to apply our addition formulas to a “generic” point P = (x : y : 1) on the
elliptic curve E defined by y2 = x3 +Ax+B, and use them to compute 2P, 3P, 4P, . . . , nP .
In Jacobian coordinates, the point nP has the form (φn : ωn : ψn), where φn, ωn, and ψn

are integer polynomials in x, y,A,B that we reduce modulo the curve equation so that the
degree in y is at most 1. In affine coordinates we then have

nP =

(
φn ωn
,

)
. (4)

ψ2
n ψ3

n

We will see that φn and ψ2
n do not depend on y, so for fixed A and B they are univariate

polynomials in x, and exactly one of ωn and ψ3
n depends on an odd power of y, so this will

give us [n] in standard form.
computes the polynomials φn, ωn, ψn for the first several values of n.

Remark 6.16. Another way to think of this is to view E as an elliptic curve over k(E).
In concrete terms, let F be the fraction field of the ring k[x, y]/(y2− x3−Ax−B), and let
P = (x, y) ∈ E(F ).

The polynomial ψn is known as the nth division polynomial. So far we have really only
defined the ratios φn/ψ

2
n and ωn/ψ

3
n, since we have been working in projective coordinates.

In order to nail down φn ωn and ψn precisely, we make the following recursive definition.
Let ψ0 = 0, and define ψ1, ψ2, ψ3, ψ4 to be:

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx−A3 − 8B2
4 ).

Note that these are the same polynomials we computed in Sage (up to a sign). We then
define the division polynomials ψn for integers n > 4 via the recurrences

ψ 3 3
2n+1 = ψn+2ψn − ψn−1ψn+1,

1
ψ2n = ψ 2

n(ψn+2ψ
2y n−1 − ψn−2ψ

2
n+1),

9

The Sage worksheet 18.783 Lecture 6: Division polynomials.sws



where we reduce the result modulo the curve equation so that ψn is at most linear in y. It
is not difficult to show that ψn(ψn+2ψ

2 2
n 1 − ψn 2ψn+1) is always divisible by 2y, so that− −

ψ2n is in fact a polynomial; see Lemma 6.17 below. If we define ψ−n := −ψn, one can check
that these recurrences hold for all integers n.

We then define φn and ωn via

φn := xψ2
n − ψn+1ψn−1,

1
ωn := (ψn+2ψ

2

4y n−1 − ψn−2ψ
2
n+1).

These equations hold for all integers n, and one finds that φn = φ−n and ωn = ω . As−n
above, we reduce φn and ωn modulo the curve equation to make them at most linear in y,
as noted above.

Lemma 6.17. For every integer n,{
Z[x,A,B] n odd

ψn lies in
2yZ[x,A,B] n even,

φn lies in {Z[x,A,B] for all n,

Z[x,A,B] n even
ωn lies in

yZ[x,A,B] n odd.

Proof. These are easy inductions; see Lemmas 3.3 and 3.4 in Washington [3].

It follows from the lemma that, after replacing y2 with x3 +Ax+B if necessary, ψ2
n lies

in Z[x,A,B] for all positive n, so we think of φn and ψ2
n as a polynomial in x alone, while

exactly one of ωn and ψ3
n depends on y. In the latter case we can multiply the numerator

and denominator of ωn/ψ
3
n by y and then replace y2 in the denominator with x3 +Ax+B

so that ωn/ψn ∈ yZ(x,A,B). With this understanding, we can view(
φn(x) ωn(x, y)

,
ψ2(x) ψ3
n n(x, y)

)
as an isogeny in standard form provided that the numerators and denominators are relatively
prime (which we will verify below).

6.6 Multiplication-by-n maps

At this point it is not at all obvious that the polynomials φn, ωn,ψn defined by our recursive
equations actually satisfy equation (4) for nP , but this is indeed the case.

Theorem 6.18. Let E/k be an elliptic curve defined by the equation y2 = x3 +Ax+B and
let n be a nonzero integer. The rational map(

φn(x) ωn(x, y)
[n](x, y) = ,

ψ2
n(x) ψ3

n(x, y)

)
sends each point P ∈ ¯E(k) to nP .

10



Proof. We have

φ (x) ω (x, y) φ (x) ω (x, y) φ (x) ω (x, y)
[−n](x, y

− n
=

−n
)

(
n

,

)
=

(
n n n

, = , ,
ψ2 (x) ψ3 (x, y) ψ2

n n ( ) −ψ3
n x n(x, y)

)
−

− −

(
ψ2
n(x) ψ3

n(x, y)

)
so it suffices to consider positive n. The proof given in [3, Thm. 9.33] uses complex analysis
and the Weierstrass ℘-function, which we will see later in the course. However, as noted in
[1, Ex. 3.7], one can give a purely algebraic proof by induction, using the formulas for the
group law. This approach has the virtue of being completely elementary and works over
any field, but it is computationally intensive (and really should be done with a computer
algebra system).2 Here we will just verify that the formulas for ψn are correct.

For 1 ≤ n ≤ 4 the formulas given for ψn match our computations in Sage using the
group law. To verify the formula for ψn when n = 2m + 1 > 4 is odd, we let Pm be the
point (φm, ωm, ψm) in Jacobian coordinates and compute Pm + Pm+1 using the group law.
The z-coordinate of the sum is given by the formula z3 = x1z

2
2−x2z21 from (2). Substituting

φm for x1, ψm for z1, φm+1 for x2, and ψm+1 for z2 yields

φmψ
2
m+1 − φm+1ψ

2
m,

which we wish to show is equal to ψ2m+1. Applying the formulas for φm and φm+1 gives

φmψ
2
m+1 − φm+1ψ

2
m = (xψ2

m − ψm+1ψm−1)ψ
2
m+1 − (xψ2

m+1 − ψm+2ψ
2

m)ψm

= ψm+2ψ
3
m − ψm−1ψ

3
m+1

= ψ2m+1,

To verify the formula for ψn when n = 2m > 4 is even, we now compute Pm +Pm. The
z-coordinate of the sum is given by the formula z3 = 2y1z1 from (3). We then have

1
2ωmψm = 2 · (ψm+2ψ

2 2

4y m−1 − ψm−2ψm+1)ψm

= ψ2m.

as desired. This completes the verification for ψn. To complete the proof one performs a
similar verification for φn and ωn using the group law formulas for x3 and y3 in Jacobian
coordinates that we derived earlier.

To compute the degree of [n] : E → E, we need to know the degrees of the polynomials
φn(x) and ψ2

n(x), and we need to verify that they are relatively prime.

Lemma 6.19. For every positive integer n the polynomials φn and ψn satisfy

φn(x) = xn
2

+ · · ·

ψn(x) =

 ,

 2n −1

nx 2 + · · · , n oddy( 2n −4

nx 2 + · · ·
)
, n even.

where each ellipsis hides terms of lower degree in x.

2If k has characteristic 2 or 3 one needs to modify the formulas to use a general Weierstrass equation; this
changes ψ2, ψ3, ψ4 and the recurrence for ωn, but the recurrences for φn and ψn are unaffected. Be aware
that there are a few typos in the formulas given in [1, Ex. 3.7] on page 105 that are corrected in the errata.
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Proof. We first prove the formula for ψn by induction on n. By inspection, the formulas hold
for n = 1, 2, 3, 4. There are then four cases to consider, depending on the value of n mod 4.
For any polynomial f(x, y) we let ltxf denote the leading term of f as a polynomial in x.

Case 0: n ≡ 0 mod 4. Let n = 2m, with m even. We have

ltxψ2m = ltx

(
1
ψm(ψ 2

m+2ψ
y m−1 − ψm ψ2

−2
2 m+1)

1 2 2

)
(

− − 2− − 2 2

·
m −4 (m+2) 4

−
2(m 1) 2

−
(m 2) −4 2(m+1)

= ymx y(m 2)x 1)2
−2

2 + 2 (m x 2 y(m 2
2 (m+ 1) x

2
− 2)x 2

y

ym
(

2− 2 − 2 2

)
m 4+m +4m+4 4+2m −4m m − 24+m −4m+4− 24+2m +4m

= (m
2

− 1)2(m+ 2)x m+ 1)22 − (m− 2)( x 2

ym 2

)
= (m− 1)2

4

(m+ 2)
2

− (m− 2)(m+ 1)2
m −4

x 2

24m − 24 n −4

= y(2m

(
)x 2 = ynx 2 .

)

Case 1: n ≡ 1 mod 4. Let n = 2m+ 1, with m even. We have

ltxψ2m+1 = ltx
(

3 3(ψm+2ψm − ψm−1ψm+1

2(m+2) − 2 24 1 3(m 3

= ltx y(m+ 2)x 2 y3
3m −12 (m−1) − 2+1) −

m

)
3x 2 − (m− 1)x 2 (m+ 1)3x 2

2 2 2 2
3 6 m +4m+3m −12

− − 3 m −2m+3m +6m

)
= (m+ 2)m x x 2 (m 1)(m+ 1) x 2

2 24m +4m n

= (2m+ 1)x 2
−1

= nx 2 .

Here we used the curve equation to replace y4 with x6, the leading term of (x3 +Ax+B)2.

Case 2: n ≡(2 mod 4. Let n = 2m, with m odd. We have

1
ltxψ2m = lt 2 2

x ψm(ψm+2ψ
y m−1 − ψm−2ψ

2 m+1)

1 2

)
(

2 2 2 2
m −1 (m+2) −1 2( − −8 (m−2) −

−
m 1)

−
1 2(m+1) −8

= mx 2 (m+ 2)x y22 (m 1)2x 2 (m 2

2y
− 2)x y2(m+ 1)2x 2

y 2 2

)
(

2 2 2 2

−
m 1+(m+2) 1+2(m 1) 8 m 1+(m 2) 1+2(m+1) 8

= m (m+ 2)(m 1)2
− − − −

m+ 1)2
− − − −

x 2 2)( x
2

− (m− 2

y 24m −4

)
= m (m+ 2)(m 1)2 (m 2)(m+ 1)2 x 2

2
24

(2

(
− − −

m − 24 n

= y m)x 2
−4

= ynx 2 .

)

Case 3: n ≡ 3 mod 4. Let n = 2m+ 1, with m odd. We have

ltxψ
3

2m+1 = ltx
(
ψm+2ψm − ψm−1ψ

3( m+1

2 2(m+2) − 2 21 3m −3 (m−1) −4 3(m+1) −12

= ltx (m+ 2)x 3
2 m x

)
2 − y(m− 1)x 3(m+ 1)32 y x 2

24m +4m

)
= (2m+ 1)x 2

2n −1

= nx 2 .
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Here we have again used the curve equation to replace y4 with x6.
Now that we have verified the formulas for ψn, we need to check φn. There are two

cases, depending on the parity of n. If n is even we have

ltxφn = ltx
(
xψ2( n − ψn+1ψn−1

2 2n

= ltx xy2n2
2n 8 ( +1) −1 (n− 21) −1

x 2
−

(

)
− n+ 1)x 2 (n− 1)x 2

2 n2 − 2 − n2

)
= n x (n 1)x

= xn
2
,

and if n is odd we have

lt 2
xφn = ltx

(
xψn − ψn+1ψn−1

−

)(
2

2 −
(n+1) − 24 (n−1) 4

= lt xn2xn 1
−

x y(n+ 1)x 2 y(n− 1)x 2

2 n2 − 2 − n2

)
= n x (n 1)x

= xn
2
,

where we have used the curve equation to replace y2 with x3.

Corollary 6.20. For all positive integers n, we have ψ2
n(x) = n2xn−1 + · · · , where the

ellipsis denotes terms of degree less than n− 1.

Lemma 6.21. Let E/k be an elliptic curve defined by y2 = x3 +Ax+B. The polynomials
φn(x) and ψ2

n(x) are relatively prime.

Proof. Suppose not. Let x0 ∈ k̄ be a common root of φn(x) and ψ2
n(x), and let P = (x0, y0)

¯be a nonzero point in E(k). Then nP = 0, since ψ2
n(x0) = 0, and we also have

φn(x ) = x 2
0 0ψn(x0)− ψn+1(x0, y0)ψn−1(x0, y0)

0 = 0− ψn+1(x0, y0)ψn−1(x0, y0),

so at least one of ψn+1(x0, y0) and ψn 1(x0, y0) is zero. But then either (n− − 1)P = 0 or
(n+ 1)P = 0, and after subtracting nP = 0 we see that either −P = 0 or P = 0, which is
a contradiction.

Theorem 6.22. Let E/k be an elliptic curve. The multiplication-by-n map [n] : E → E
has degree n2. It is separable if and only it n is not divisible by the characteristic of k.

Proof. From Lemma 6.19, we have deg φn = n2 and degψ2
n ≤ n− 1, and from Lemma 6.21

we know that φn ⊥ ψ2
n. It follows that deg[n] = n2. If n is not divisible by the characteristic

p of k, then the leading term n2xn
2−1 of φ′n(x) is nonzero and therefore(

φn(x) ′
= 0

ψ2
n(x)

)
and [n] is separable. If n is divisible by the characteristic of k then the xn−1 term in ψ2

n

vanishes and degψ2
n is less than n2 − 1. This implies that the kernel of [n] is smaller than

its degree n2, and therefore [n] is inseparable.

13
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